Skip to main content

Advertisement

Log in

Nontranscriptional actions of the glucocorticoid receptor

  • Invited Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Many cellular responses to corticosteroids involve the transcriptional modulation of target genes by a prototypical nuclear receptor, the glucocorticoid receptor (GR). In the classic model of steroid hormone action GR acts as ligand-dependent transcription factor by either activating or repressing gene expression through direct interactions with DNA or other transcription factors. Recent evidence suggests an important role for nontranscriptional effects of GR in the vascular system. The nontranscriptional actions of GR involve the rapid activation of protein kinases, such as phosphatidylinositol-3 kinase and Akt, leading to the activation of endothelial nitric oxide synthase. This novel pathway of steroid hormone action protects against ischemic injury by augmenting blood flow and decreasing vascular inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

AP :

Activator protein

DBD :

DNA-binding domain

Dex :

Dexamethasone

eNOS :

Endothelial nitric oxide synthase

ER :

Estrogen receptor

GR :

Glucocorticoid receptor

GRE :

Glucocorticoid response elements

JNK :

Jun N-terminal kinase

LBD :

Ligand-binding domain

NF-κB :

Nuclear transcription factor κB

PI3K :

Phosphatidylinositol 3-kinase

References

  1. Tronche F, Kellendonk C, Reichardt HM, Schutz G (1998) Genetic dissection of glucocorticoid receptor function in mice. Curr Opin Genet Dev 8:532–538

    Article  CAS  PubMed  Google Scholar 

  2. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179

    Article  CAS  PubMed  Google Scholar 

  3. Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641

    CAS  PubMed  Google Scholar 

  4. Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM (1986) Functional domains of the human glucocorticoid receptor. Cell 46:645–652

    CAS  PubMed  Google Scholar 

  5. Hollenberg SM, Evans RM (1988) Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55:899–906

    CAS  PubMed  Google Scholar 

  6. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    CAS  PubMed  Google Scholar 

  7. Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, Herrlich P (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204

    CAS  PubMed  Google Scholar 

  8. Karin M (1998) New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 93:487–490

    CAS  PubMed  Google Scholar 

  9. Hafezi-Moghadam A, Simoncini T, Yang E, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473–479

    Article  CAS  PubMed  Google Scholar 

  10. Limbourg F, Huang Z, Plumier J, Simoncini T, Fujioka M, Tuckermann J, Schütz G, Moskowitz M, Liao J (2002) Rapid non-transcriptional activation of endothelial nitric oxide synthase mediates increase in cerebral blood flow and stroke protection by corticosteroids. J Clin Invest 110:1729–1738

    Article  CAS  PubMed  Google Scholar 

  11. Thiemermann C (2002) Corticosteroids and cardioprotection. Nat Med 8:453–455

    Article  CAS  PubMed  Google Scholar 

  12. Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G (1992) A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A 89:9991–9995

    CAS  PubMed  Google Scholar 

  13. Barzilai D, Plavnick J, Hazani A, Einath R, Kleinhaus N, Kanter Y (1972) Use of hydrocortisone in the treatment of acute myocardial infarction. Summary of a clinical trial in 446 patients. Chest 61:488–491

    CAS  PubMed  Google Scholar 

  14. Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E (1973) Reduction of experimental myocardial infarct size by corticosteroid administration. J Clin Invest 52:599–607

    CAS  PubMed  Google Scholar 

  15. Spath JA Jr, Lane DL, Lefer AM (1974) Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. Circ Res 35:44–51

    CAS  PubMed  Google Scholar 

  16. Patten BM, Mendell J, Bruun B, Curtin W, Carter S (1972) Double-blind study of the effects of dexamethasone on acute stroke. Neurology 22:377–383

    CAS  PubMed  Google Scholar 

  17. Bertorelli R, Adami M, Di Santo E, Ghezzi P (1998) MK 801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemia in the rat brain. Neurosci Lett 246:41–44

    Article  CAS  PubMed  Google Scholar 

  18. Courten-Myers GM de, Kleinholz M, Wagner KR, Xi G, Myers RE (1994) Efficacious experimental stroke treatment with high-dose methylprednisolone. Stroke 25:487–492

    PubMed  Google Scholar 

  19. Slivka AP, Murphy EJ (2001) High-dose methylprednisolone treatment in experimental focal cerebral ischemia. Exp Neurol 167:166–172

    Article  CAS  PubMed  Google Scholar 

  20. Braunwald E, Zipes DP, Libby P (2001) Heart disease. Saunders, Philadelphia

  21. Wallerath T, Witte K, Schafer SC, Schwarz PM, Prellwitz W, Wohlfart P, Kleinert H, Lehr HA, Lemmer B, Forstermann U (1999) Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc Natl Acad Sci U S A 96:13357–13362

    Article  CAS  PubMed  Google Scholar 

  22. Sapolsky RM, Pulsinelli WA (1985) Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229:1397–1400

    CAS  PubMed  Google Scholar 

  23. Roberts R, DeMello V, Sobel BE (1976) Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53:I204–I206

    CAS  PubMed  Google Scholar 

  24. Bulkley BH, Roberts WC (1974) Steroid therapy during acute myocardial infarction. A cause of delayed healing and of ventricular aneurysm. Am J Med 56:244–250

    CAS  PubMed  Google Scholar 

  25. Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163

    PubMed  Google Scholar 

  26. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    CAS  PubMed  Google Scholar 

  27. Bamberger CM, Bamberger AM, de Castro M, Chrousos GP (1995) Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 95:2435–2441

    CAS  PubMed  Google Scholar 

  28. Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA (1999) The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem 274:27857–27866

    Article  CAS  PubMed  Google Scholar 

  29. Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168

    Google Scholar 

  30. Pratt WB, Silverstein AM, Galigniana MD (1999) A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal 11:839–851

    Article  CAS  PubMed  Google Scholar 

  31. Picard D, Yamamoto KR (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6:3333–3340

    CAS  PubMed  Google Scholar 

  32. Savory JG, Hsu B, Laquian IR, Giffin W, Reich T, Hache RJ, Lefebvre YA (1999) Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 19:1025–1037

    CAS  PubMed  Google Scholar 

  33. Sackey FN, Hache RJ, Reich T, Kwast-Welfeld J, Lefebvre YA (1996) Determinants of subcellular distribution of the glucocorticoid receptor. Mol Endocrinol 10:1191–1205

    CAS  PubMed  Google Scholar 

  34. Madan AP, DeFranco DB (1993) Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci U S A 90:3588–3592

    CAS  PubMed  Google Scholar 

  35. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198

    Google Scholar 

  36. Dahlman-Wright K, Wright A, Gustafsson JA, Carlstedt-Duke J (1991) Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J Biol Chem 266:3107–3112

    CAS  PubMed  Google Scholar 

  37. Heck S, Kullmann M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P, Cato AC (1994) A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 13:4087–4095

    CAS  PubMed  Google Scholar 

  38. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105

    CAS  PubMed  Google Scholar 

  39. Drouin J, Sun YL, Chamberland M, Gauthier Y, De Lean A, Nemer M, Schmidt TJ (1993) Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J 12:145–156

    CAS  PubMed  Google Scholar 

  40. Gottlicher M, Heck S, Herrlich P (1998) Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med 76:480–489

    Article  CAS  PubMed  Google Scholar 

  41. Schule R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM (1990) Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62:1217–1226

    CAS  PubMed  Google Scholar 

  42. Konig H, Ponta H, Rahmsdorf HJ, Herrlich P (1992) Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J 11:2241–2246

    CAS  PubMed  Google Scholar 

  43. McKay LI, Cidlowski JA (1999) Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev 20:435–459

    CAS  PubMed  Google Scholar 

  44. Stocklin E, Wissler M, Gouilleux F, Groner B (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383:726–728

    CAS  PubMed  Google Scholar 

  45. Reichardt HM, Schutz G (1998) Glucocorticoid signalling-multiple variations of a common theme. Mol Cell Endocrinol 146:1–6

    Article  CAS  PubMed  Google Scholar 

  46. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9:1608–1621

    CAS  PubMed  Google Scholar 

  47. Reichardt HM, Umland T, Bauer A, Kretz O, Schutz G (2000) Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Mol Cell Biol 20:9009–9017

    Article  CAS  PubMed  Google Scholar 

  48. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schutz G (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541

    CAS  PubMed  Google Scholar 

  49. Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schutz G, Angel P (1999) The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 147:1365–1370

    Article  CAS  PubMed  Google Scholar 

  50. Reichardt HM, Tuckermann JP, Gottlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schutz G (2001) Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 20:7168–7173

    Article  CAS  PubMed  Google Scholar 

  51. Grose R, Werner S, Kessler D, Tuckermann J, Huggel K, Durka S, Reichardt HM (2002) A role for endogenous glucocorticoids in wound repair. EMBO Rep 3:575–582

    Article  CAS  PubMed  Google Scholar 

  52. Wehling M (1997) Specific, nongenomic actions of steroid hormones. Annu Rev Physiol 59:365–393

    Article  CAS  PubMed  Google Scholar 

  53. Orchinik M, Murray TF, Moore FL (1991) A corticosteroid receptor in neuronal membranes. Science 252:1848–1851

    CAS  PubMed  Google Scholar 

  54. Steiner A, Vogt E, Locher R, Vetter W (1988) Stimulation of the phosphoinositide signalling system as a possible mechanism for glucocorticoid action in blood pressure control. J Hypertens Suppl 6:S366–S368

    CAS  PubMed  Google Scholar 

  55. Inagaki N, Miura T, Nakajima T, Yoshida K, Nagai H, Koda A (1992) Studies on the anti-allergic mechanism of glucocorticoids in mice. J Pharmacobiodyn 15:581–587

    CAS  PubMed  Google Scholar 

  56. Smith MD, Ahern MJ, Brooks PM, Roberts-Thomson PJ (1988) The clinical and immunological effects of pulse methylprednisolone therapy in rheumatoid arthritis. III. Effects on immune and inflammatory indices in synovial fluid. J Rheumatol 15:238–241

    CAS  PubMed  Google Scholar 

  57. Vyden JK, Nagasawa K, Rabinowitz B, Parmley WW, Tomoda H, Corday E, Swan HJ (1974) Effects of methylprednisolone administration in acute myocardial infarction. Am J Cardiol 34:677–686

    CAS  PubMed  Google Scholar 

  58. Buttgereit F, Scheffold A (2002) Rapid glucocorticoid effects on immune cells. Steroids 67:529–534

    Article  CAS  PubMed  Google Scholar 

  59. Pitzalis C, Pipitone N, Perretti M (2002) Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann N Y Acad Sci 966:108–118

    CAS  PubMed  Google Scholar 

  60. Croxtall JD, Choudhury Q, Flower RJ (2000) Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol 130:289–298

    CAS  PubMed  Google Scholar 

  61. Minden A, Karin M (1997) Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta 1333:F85–F104

    CAS  PubMed  Google Scholar 

  62. Caelles C, Gonzalez-Sancho JM, Munoz A (1997) Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev 11:3351–3364

    CAS  PubMed  Google Scholar 

  63. Gonzalez MV, Jimenez B, Berciano MT, Gonzalez-Sancho JM, Caelles C, Lafarga M, Munoz A (2000) Glucocorticoids antagonize AP-1 by inhibiting the Activation/phosphorylation of JNK without affecting its subcellular distribution. J Cell Biol 150:1199–1208

    Article  CAS  PubMed  Google Scholar 

  64. Cato AC, Nestl A, Mink S (2002) Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE 2002:RE9

    PubMed  Google Scholar 

  65. Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730

    CAS  PubMed  Google Scholar 

  66. Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O'Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846

    Article  CAS  PubMed  Google Scholar 

  67. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999) Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 103:401–406

    CAS  PubMed  Google Scholar 

  68. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541

    Google Scholar 

  69. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, Sessa WC, Bender JR (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87:677–682

    CAS  PubMed  Google Scholar 

  70. Loscalzo J (1995) Nitric oxide and vascular disease. N Engl J Med 333:251–253

    Article  CAS  PubMed  Google Scholar 

  71. De Caterina R, Gimbrone MAJr 1995. Leukocyte-endothelial interactions and the pathogenesis of atherosclerosis. In: Kristensen SD, Schmidt EB, De Caterina R, Endres S (eds) n-3 fatty acids—prevention and treatment in vascular disease. Springer, Berlin Heidelberg New York, pp 9–24

  72. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J (1997) Induction of the cyclin-dependent kinase inhibitor p21 (Sdi1/Cip1/Waf1) by nitric oxide-generating vasodilator in vascular smooth muscle cells. J Biol Chem 272:10050–10057

    CAS  PubMed  Google Scholar 

  73. Dalkara T, Morikawa E, Panahian N, Moskowitz MA (1994) Blood flow-dependent functional recovery in a rat model of focal cerebral ischemia. Am J Physiol 267:H678–H683

    CAS  PubMed  Google Scholar 

  74. Morikawa E, Moskowitz MA, Huang Z, Yoshida T, Irikura K, Dalkara T (1994) L-Arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke 25:429–435

    CAS  PubMed  Google Scholar 

  75. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 95:8880–8885

    Article  CAS  PubMed  Google Scholar 

  76. Kawashima S, Yamashita T, Ozaki M, Ohashi Y, Azumi H, Inoue N, Hirata K, Hayashi Y, Itoh H, Yokoyama M (2001) Endothelial NO synthase overexpression inhibits lesion formation in mouse model of vascular remodeling. Arterioscler Thromb Vasc Biol 21:201–207

    CAS  PubMed  Google Scholar 

  77. Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL (1998) Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J Clin Invest 101:1225–1232

    CAS  PubMed  Google Scholar 

  78. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987

    CAS  PubMed  Google Scholar 

  79. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    CAS  PubMed  Google Scholar 

  80. Langdown ML, Holness MJ, Sugden MC (2001) Early growth retardation induced by excessive exposure to glucocorticoids in utero selectively increases cardiac GLUT1 protein expression and Akt/protein kinase B activity in adulthood. J Endocrinol 169:11–22

    CAS  PubMed  Google Scholar 

  81. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    CAS  PubMed  Google Scholar 

  82. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    CAS  PubMed  Google Scholar 

  83. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    CAS  PubMed  Google Scholar 

  84. Castoria G, Migliaccio A, Bilancio A, Di Domenico M, de Falco A, Lombardi M, Fiorentino R, Varricchio L, Barone MV, Auricchio F (2001) PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20:6050–6059

    Article  CAS  PubMed  Google Scholar 

  85. Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4:1041–1049

    CAS  PubMed  Google Scholar 

  86. Vayssiere BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, Gronemeyer H, Resche-Rigon M (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol 11:1245–1255

    CAS  PubMed  Google Scholar 

  87. Newton R (2000) Molecular mechanisms of glucocorticoid action: what is important? Thorax 55:603–613

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limbourg, F.P., Liao, J.K. Nontranscriptional actions of the glucocorticoid receptor. J Mol Med 81, 168–174 (2003). https://doi.org/10.1007/s00109-003-0418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0418-y

Keywords

Navigation