Skip to main content

Advertisement

Log in

The telomerase cycle: normal and pathological aspects

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Telomeres are nucleoprotein complexes that cap the end of eukaryotic chromosomes and are essential for their function and stability. Telomerase, a reverse transcriptase that extends the single-stranded G-rich 3′ protruding ends of chromosomes, stabilizes telomere length in germ line cells and regenerative tissues as well as in tumor cells. In the absence of telomerase telomeres shorten with cell division, a process able to trigger cell growth arrest. When telomerase is present in the cell, its activity is tightly regulated at its site of action by factors specifically bound to the telomeric DNA. Recent data indicate that telomeres reorganize during the cell cycle. This review summarizes our current knowledge on how telomeres are dynamically organized and remodeled during cell cycle and stress response, pointing out the conservation and the difference between yeast and human. We then focus on the cellular consequences of telomere modifications in normal and cancer cells. This leads to a discussion of the different roles, seemingly contradictory, of telomeres and telomerase during the initiation and the progression of a cancer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALT :

Alternative lengthening of telomere

APB :

ALT-associated promyelocytic leukemia bodies

DNA-PK :

DNA-dependent protein kinase

DSB :

Double strand break

HR :

Homologous recombination

MRN :

MRE11/RAD50/NBS

NBS :

Nijmegen breakage syndrome protein

NHEJ :

Nonhomologous end-joining

PARP :

Poly(ADP-ribose) polymerase

PKcs :

Protein kinase catalytic subunit

Rap :

Repressor/activator protein

RPA :

Replication protein A

TRF :

Telomeric repeat binding factor

References

  1. McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34:331–358

    Article  CAS  PubMed  Google Scholar 

  2. Lundblad V (2000) DNA ends: maintenance of chromosome termini versus repair of double strand breaks. Mutat Res 451:227–240

    CAS  PubMed  Google Scholar 

  3. Williams B, Lustig AJ (2003) The paradoxical relationship between NHEJ and telomeric fusion. Mol Cell 11:1125–1126

    Article  CAS  PubMed  Google Scholar 

  4. Ferreira MG, Miller KM, Cooper JP (2004) Indecent exposure: when telomeres become uncapped. Mol Cell 13:7–18

    Article  CAS  PubMed  Google Scholar 

  5. Pelicci PG (2004) Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J Clin Invest 113:4–7

    Article  CAS  PubMed  Google Scholar 

  6. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  7. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Google Scholar 

  8. Stewart SA, Ben-Porath I, Carey VJ, O’Connor BF, Hahn WC, Weinberg RA (2003) Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 33:492–496

    Google Scholar 

  9. Nugent CI, Lundblad V (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev 12:1073–1085

    Google Scholar 

  10. Chakhparonian M, Wellinger RJ (2003) Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet 19:439–446

    Article  CAS  PubMed  Google Scholar 

  11. Vega LR, Mateyak MK, Zakian VA (2003) Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4:948–959

    Google Scholar 

  12. Shay JW (1997) Telomerase in human development and cancer. J Cell Physiol 173:266–270

    Article  CAS  PubMed  Google Scholar 

  13. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, Weinberg RA, Stewart SA, Hahn WC (2003) Telomerase maintains telomere structure in normal human cells. Cell 114:241–253

    Article  CAS  PubMed  Google Scholar 

  14. Lin SY, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113:881–889

    Article  CAS  PubMed  Google Scholar 

  15. Artandi SE, DePinho RA (2000) A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10:39–46

    Article  CAS  PubMed  Google Scholar 

  16. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3:1271–1274

    Google Scholar 

  17. Mehle C, Piatyszek MA, Ljungberg B, Shay JW, Roos G (1996) Telomerase activity in human renal cell carcinoma. Oncogene 13:161–166

    Google Scholar 

  18. Scheel C, Schaefer KL, Jauch A, Keller M, Wai D, Brinkschmidt C, van Valen F, Boecker W, Dockhorn-Dworniczak B, Poremba C (2001) Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene 20:3835–3844

    Article  CAS  PubMed  Google Scholar 

  19. Lustig AJ (2003) Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nat Rev Genet 4:916–923

    Google Scholar 

  20. McEachern MJ, Blackburn EH (1994) A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci U S A 91:3453–3457

    Google Scholar 

  21. Ray A, Runge KW (2001) Yeast telomerase appears to frequently copy the entire template in vivo. Nucleic Acids Res 29:2382–2394

    Article  CAS  PubMed  Google Scholar 

  22. Wellinger RJ, Wolf AJ, Zakian VA (1993) Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72:51–60

    Article  CAS  PubMed  Google Scholar 

  23. Larrivee M, LeBel C, Wellinger RJ (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18:1391–1396

    Article  CAS  PubMed  Google Scholar 

  24. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  CAS  PubMed  Google Scholar 

  25. McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16:3705–3714

    Article  CAS  PubMed  Google Scholar 

  26. Kanoh J, Ishikawa F (2003) Composition and conservation of the telomeric complex. Cell Mol Life Sci 60:2295–2302

    Article  CAS  PubMed  Google Scholar 

  27. Singer MS, Gottschling DE (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404–409

    CAS  PubMed  Google Scholar 

  28. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567

    Article  PubMed  Google Scholar 

  29. Lin JJ, Zakian VA (1995) An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81:1127–1135

    CAS  PubMed  Google Scholar 

  30. Seto AG, Livengood AJ, Tzfati Y, Blackburn EH, Cech TR (2002) A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev 16:2800–2812

    Article  CAS  PubMed  Google Scholar 

  31. Hughes TR, Evans SK, Weilbaecher RG, Lundblad V (2000) The Est3 protein is a subunit of yeast telomerase. Curr Biol 10:809–812

    Article  CAS  PubMed  Google Scholar 

  32. Lin JJ, Zakian VA (1996) The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93:13760–13765

    Google Scholar 

  33. Nugent CI, Hughes TR, Lue NF, Lundblad V (1996) Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–252

    Article  CAS  PubMed  Google Scholar 

  34. Lustig AJ (2001) Cdc13 subcomplexes regulate multiple telomere functions. Nat Struct Biol 8:297–299

    Google Scholar 

  35. Grandin N, Reed SI, Charbonneau M (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11:512–527

    CAS  PubMed  Google Scholar 

  36. Grandin N, Damon C, Charbonneau M (2000) Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol Cell Biol 20:8397–8408

    Article  CAS  PubMed  Google Scholar 

  37. Grandin N, Damon C, Charbonneau M (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20:1173–1183

    Article  CAS  PubMed  Google Scholar 

  38. Chandra A, Hughes TR, Nugent CI, Lundblad V (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15:404–414

    Article  CAS  PubMed  Google Scholar 

  39. Qi H, Zakian VA (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14:1777–1788

    CAS  PubMed  Google Scholar 

  40. Pennock E, Buckley K, Lundblad V (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104:387–396

    Article  CAS  PubMed  Google Scholar 

  41. Tsai YL, Tseng SF, Chang SH, Lin CC, Teng SC (2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol 22:5679–5687

    Article  CAS  PubMed  Google Scholar 

  42. Wang MJ, Lin YC, Pang TL, Lee JM, Chou CC, Lin JJ (2000) Telomere-binding and Stn1p-interacting activities are required for the essential function of Saccharomyces cerevisiae Cdc13p. Nucleic Acids Res 28:4733–4741

    Article  CAS  PubMed  Google Scholar 

  43. Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286:117–120

    Article  CAS  PubMed  Google Scholar 

  44. Gravel S, Larrivee M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280:741–744

    Article  CAS  PubMed  Google Scholar 

  45. Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17:1819–1828

    Article  CAS  PubMed  Google Scholar 

  46. Polotnianka RM, Li J, Lustig AJ (1998) The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8:831–834

    Article  CAS  PubMed  Google Scholar 

  47. Nugent CI, Bosco G, Ross LO, Evans SK, Salinger AP, Moore JK, Haber JE, Lundblad V (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8:657–660

    Article  CAS  PubMed  Google Scholar 

  48. Diede SJ, Gottschling DE (2001) Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr Biol 11:1336–1340

    Article  CAS  PubMed  Google Scholar 

  49. Tsukamoto Y, Taggart AK, Zakian VA (2001) The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11:1328–1335

    Article  CAS  PubMed  Google Scholar 

  50. Chamankhah M, Fontanie T, Xiao W (2000) The Saccharomyces cerevisiae mre11 (ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155:569–576

    CAS  PubMed  Google Scholar 

  51. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    Article  CAS  PubMed  Google Scholar 

  52. Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829

    Article  CAS  PubMed  Google Scholar 

  53. Ritchie KB, Mallory JC, Petes TD (1999) Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol 19:6065–6075

    CAS  PubMed  Google Scholar 

  54. Ritchie KB, Petes TD (2000) The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155:475–479

    CAS  PubMed  Google Scholar 

  55. Chan SW, Blackburn EH (2003) Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol Cell 11:1379–1387

    Article  CAS  PubMed  Google Scholar 

  56. Choe W, Budd M, Imamura O, Hoopes L, Campbell JL (2002) Dynamic localization of an Okazaki fragment processing protein suggests a novel role in telomere replication. Mol Cell Biol 22:4202–4217

    Article  CAS  PubMed  Google Scholar 

  57. Parenteau J, Wellinger RJ (2002) Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease. Genetics 162:1583–1594

    CAS  PubMed  Google Scholar 

  58. Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17:2384–2395

    Article  CAS  PubMed  Google Scholar 

  59. Schramke V, Luciano P, Brevet V, Guillot S, Corda Y, Longhese MP, Gilson E, Geli V (2004) RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat Genet 36:46–54

    Google Scholar 

  60. Schulz VP, Zakian VA (1994) The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76:145–155

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, Monson EK, Teng S, Schulz VP, Zakian VA (2000) Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289:771–774

    Article  CAS  PubMed  Google Scholar 

  62. Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6:197–210

    CAS  PubMed  Google Scholar 

  63. Marcand S, Gilson E, Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990

    Article  CAS  PubMed  Google Scholar 

  64. Diede SJ, Gottschling DE (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99:723–733

    Article  CAS  PubMed  Google Scholar 

  65. Marcand S, Brevet V, Gilson E (1999) Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J 18:3509–3519

    Article  CAS  PubMed  Google Scholar 

  66. Brevet V, Berthiau AS, Civitelli L, Donini P, Schramke V, Geli V, Ascenzioni F, Gilson E (2003) The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J 22:1697–1706

    Article  CAS  PubMed  Google Scholar 

  67. Shore D (1994) RAP1: a protean regulator in yeast. Trends Genet 10:408–412

    Article  CAS  PubMed  Google Scholar 

  68. Ray A, Runge KW (1999) The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction. Mol Cell Biol 19:31–45

    CAS  PubMed  Google Scholar 

  69. Grossi S, Bianchi A, Damay P, Shore D (2001) Telomere formation by rap1p binding site arrays reveals end-specific length regulation requirements and active telomeric recombination. Mol Cell Biol 21:8117–8128

    Article  CAS  PubMed  Google Scholar 

  70. Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–747

    Article  CAS  PubMed  Google Scholar 

  71. Park MJ, Jang YK, Choi ES, Kim HS, Park SD (2002) Fission yeast Rap1 homolog is a telomere-specific silencing factor and interacts with Taz1p. Mol Cells 13:327–333

    Google Scholar 

  72. Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11:1624–1630

    Article  CAS  PubMed  Google Scholar 

  73. Marcand S, Brevet V, Mann C, Gilson E (2000) Cell cycle restriction of telomere elongation. Curr Biol 10:487–490

    Article  CAS  PubMed  Google Scholar 

  74. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  CAS  PubMed  Google Scholar 

  75. Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117:323–335

    Article  CAS  PubMed  Google Scholar 

  76. Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in S. cerevisiae. Genes Dev 11:748–760

    CAS  PubMed  Google Scholar 

  77. Smith CD, Smith DL, DeRisi JL, Blackburn EH (2003) Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14:556–570

    Article  CAS  PubMed  Google Scholar 

  78. Taggart AK, Teng SC, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297:1023–1026

    Article  CAS  PubMed  Google Scholar 

  79. Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A (2004) Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell 14:515–522

    Article  CAS  PubMed  Google Scholar 

  80. Viscardi V, Baroni E, Romano M, Lucchini G, Longhese MP (2003) Sudden telomere lengthening triggers a Rad53-dependent checkpoint in Saccharomyces cerevisiae. Mol Biol Cell 14:3126–3143

    Article  CAS  PubMed  Google Scholar 

  81. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  CAS  Google Scholar 

  82. Nakada D, Shimomura T, Matsumoto K, Sugimoto K (2003) The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Res 31:1715–1724

    Article  CAS  PubMed  Google Scholar 

  83. Taggart AK, Zakian VA (2003) Telomerase: what are the Est proteins doing? Curr Opin Cell Biol 15:275–280

    Article  CAS  PubMed  Google Scholar 

  84. Chan SW, Chang J, Prescott J, Blackburn EH (2001) Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr Biol 11:1240–1250

    Article  CAS  PubMed  Google Scholar 

  85. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  CAS  PubMed  Google Scholar 

  86. Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17:231–235

    Google Scholar 

  87. Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17:236–239

    Google Scholar 

  88. Steensel B van, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743

    Article  PubMed  Google Scholar 

  89. Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20:1659–1668

    Article  CAS  PubMed  Google Scholar 

  90. Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, Ricoul M, Pommier JP, Sabatier L, Gilson E (2002) Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 22:3474–3487

    Article  CAS  PubMed  Google Scholar 

  91. Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) A Dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14:1621–1631

    Article  CAS  PubMed  Google Scholar 

  92. Kim SH, Beausejour C, Davalos AR, Kaminker P, Heo SJ, Campisi J (2004) TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem 279:43799–43804

    Article  CAS  PubMed  Google Scholar 

  93. Ye JZ, Donigian JR, Van Overbeek M, Loayza D, Luo Y, Krutchinsky AN, Chait BT, De Lange T (2004) TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres J Biol Chem 279:47264–47271

    CAS  Google Scholar 

  94. Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14:2807–2812

    Article  CAS  PubMed  Google Scholar 

  95. d’Adda di Fagagna F, Hande MP, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11:1192–1196

    Article  PubMed  Google Scholar 

  96. Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH (1999) DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A 96:14899–14904

    Google Scholar 

  97. Espejel S, Blasco MA (2002) Identification of telomere-dependent “senescence-like” arrest in mouse embryonic fibroblasts. Exp Cell Res 276:242–248

    Article  CAS  PubMed  Google Scholar 

  98. Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1:244–252

    Article  CAS  PubMed  Google Scholar 

  99. Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA (2001) The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21:3642–3651

    Article  CAS  PubMed  Google Scholar 

  100. Espejel S, Franco S, Sgura A, Gae D, Bailey SM, Taccioli GE, Blasco MA (2002) Functional interaction between DNA-PKcs and telomerase in telomere length maintenance. EMBO J 21:6275–6287

    Article  CAS  PubMed  Google Scholar 

  101. Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21:2207–2219

    Article  CAS  PubMed  Google Scholar 

  102. Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12:1635–1644

    Google Scholar 

  103. Zhou XZ, Lu KP (2001) The Pin2/TRF1-interacting protein PinX1 Is a potent telomerase inhibitor. Cell 107:347–359

    Article  CAS  PubMed  Google Scholar 

  104. Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484–1487

    Article  CAS  PubMed  Google Scholar 

  105. Cook BD, Dynek JN, Chang W, Shostak G, Smith S (2002) Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22:332–342

    Article  CAS  PubMed  Google Scholar 

  106. Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P, Campisi J (2001) TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J Biol Chem 276:35891–35899

    Article  CAS  PubMed  Google Scholar 

  107. Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in human cells. Curr Biol 10:1299–1302

    Article  CAS  PubMed  Google Scholar 

  108. Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412

    Article  CAS  PubMed  Google Scholar 

  109. Ye JZ, De Lange T (2004) TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet 36:618–623

    Google Scholar 

  110. Kim SH, Han S, You YH, Chen DJ, Campisi J (2003) The human telomere-associated protein TIN2 stimulates interactions between telomeric DNA tracts in vitro. EMBO Rep 4:685–691

    Article  CAS  PubMed  Google Scholar 

  111. Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292:1171–1175

    Article  CAS  PubMed  Google Scholar 

  112. Colgin LM, Baran K, Baumann P, Cech TR, Reddel RR (2003) Human POT1 facilitates telomere elongation by telomerase. Curr Biol 13:942–946

    Google Scholar 

  113. Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423:1013–1018

    Article  CAS  PubMed  Google Scholar 

  114. Lei M, Podell ER, Baumann P, Cech TR (2003) DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426:198–203

    Article  CAS  PubMed  Google Scholar 

  115. Loayza D, Parsons H, Donigian J, Hoke K, de Lange T (2004) DNA binding features of human POT1: a nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J Biol Chem 279:13241–13248

    Article  CAS  PubMed  Google Scholar 

  116. Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6:673–680

    Google Scholar 

  117. Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, de Lange T (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18:1649–1654

    Article  CAS  PubMed  Google Scholar 

  118. Karlseder J, Kachatrian L, Takai H, Mercer K, Hingorani S, Jacks T, de Lange T (2003) Targeted deletion reveals an essential function for the telomere length regulator Trf1. Mol Cell Biol 23:6533–6541

    Article  CAS  PubMed  Google Scholar 

  119. Iwano T, Tachibana M, Reth M, Shinkai Y (2004) Importance of TRF1 for functional telomere structure. J Biol Chem 279:1442–1448

    Article  CAS  PubMed  Google Scholar 

  120. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283:1321–1325

    Article  CAS  PubMed  Google Scholar 

  121. Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21:4338–4348

    Article  CAS  PubMed  Google Scholar 

  122. Steensel B van, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413

    Article  PubMed  Google Scholar 

  123. Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12:1635–1644

    Google Scholar 

  124. Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JH, de Lange T (2003) ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12:1489–1498

    Google Scholar 

  125. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  CAS  PubMed  Google Scholar 

  126. Wei C, Price CM (2004) Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1. Mol Cell Biol 24:2091–2102

    Article  CAS  PubMed  Google Scholar 

  127. Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20:5532–5540

    Article  CAS  PubMed  Google Scholar 

  128. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR, 3rd, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486

    Article  CAS  PubMed  Google Scholar 

  129. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617

    Article  CAS  PubMed  Google Scholar 

  130. Bosch M van den, Bree RT, Lowndes NF (2003) The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4:844–849

    Article  PubMed  Google Scholar 

  131. Zhu XD, Kuster B, Mann M, Petrini JH, Lange T (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25:347–352

    Article  CAS  PubMed  Google Scholar 

  132. Connelly JC, Leach DR (2002) Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem Sci 27:410–418

    Article  CAS  PubMed  Google Scholar 

  133. Wu G, Jiang X, Lee WH, Chen PL (2003) Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen breakage syndrome 1. Cancer Res 63:2589–2595

    CAS  PubMed  Google Scholar 

  134. Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    CAS  PubMed  Google Scholar 

  135. Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D, Hoeijmakers JH, Kanaar R (1997) Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204

    Article  CAS  PubMed  Google Scholar 

  136. Sigurdsson S, Van Komen S, Petukhova G, Sung P (2002) Homologous DNA pairing by human recombination factors Rad51 and Rad54. J Biol Chem 277:42790–42794

    Article  CAS  PubMed  Google Scholar 

  137. Jaco I, Munoz P, Goytisolo F, Wesoly J, Bailey S, Taccioli G, Blasco MA (2003) Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 23:5572–5580

    Article  CAS  PubMed  Google Scholar 

  138. Tarsounas M, Munoz P, Claas A, Smiraldo PG, Pittman DL, Blasco MA, West SC (2004) Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117:337–347

    Article  CAS  PubMed  Google Scholar 

  139. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119

    Article  CAS  PubMed  Google Scholar 

  140. Machwe A, Xiao L, Orren DK (2004) TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23:149–156

    Article  CAS  PubMed  Google Scholar 

  141. Bai Y, Murnane JP (2003) Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein. Hum Genet 113:337–347

    Article  CAS  PubMed  Google Scholar 

  142. Fry M, Loeb LA (1999) Human werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J Biol Chem 274:12797–12802

    Article  CAS  PubMed  Google Scholar 

  143. Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912

    CAS  PubMed  Google Scholar 

  144. Li B, Comai L (2000) Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J Biol Chem 275:28349–28352

    Article  CAS  PubMed  Google Scholar 

  145. Li B, Navarro S, Kasahara N, Comai L (2004) Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 279:13659–13667

    Article  CAS  PubMed  Google Scholar 

  146. Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101:471–483

    Article  CAS  PubMed  Google Scholar 

  147. Li B, de Lange T (2003) Rap1 affects the length and heterogeneity of human telomeres. Mol Biol Cell 14:5060–5068

    Article  CAS  PubMed  Google Scholar 

  148. O’Connor MS, Safari A, Liu D, Qin J, Songyang Z (2004) The human Rap1 protein complex and modulation of telomere length. J Biol Chem 279:28585–28591

    Article  PubMed  Google Scholar 

  149. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T (2004) Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 18:2108–2119

    Article  CAS  PubMed  Google Scholar 

  150. Wei C, Price M (2003) Protecting the terminus: t-loops and telomere end-binding proteins. Cell Mol Life Sci 60:2283–2294

    Article  CAS  PubMed  Google Scholar 

  151. Gisselsson D (2003) Chromosome instability in cancer: how, when, and why? Adv Cancer Res 87:1–29

    Google Scholar 

  152. O’Sullivan JN, Bronner MP, Brentnall TA, Finley JC, Shen WT, Emerson S, Emond MJ, Gollahon KA, Moskovitz AH, Crispin DA, Potter JD, Rabinovitch PS (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32:280–284

    Google Scholar 

  153. Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159

    Google Scholar 

  154. Gabet AS, Mortreux F, Charneau P, Riou P, Duc-Dodon M, Wu Y, Jeang KT, Wattel E (2003) Inactivation of hTERT transcription by Tax. Oncogene 22:3734–3741

    Article  CAS  PubMed  Google Scholar 

  155. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  CAS  PubMed  Google Scholar 

  156. Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a (delta2/3) cancer-prone mouse. Cell 97:515–525

    Article  CAS  PubMed  Google Scholar 

  157. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 26:114–117

    Google Scholar 

  158. Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA (2003) Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 63:5021–5027

    CAS  PubMed  Google Scholar 

  159. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  160. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50–65

    Article  CAS  PubMed  Google Scholar 

  161. Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW, Fleming MD, Olsen JC, Miller SW, Weinberg RA, Hahn WC (2002) Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21:4577–4586

    Article  CAS  PubMed  Google Scholar 

  162. Seger YR, Garcia-Cao M, Piccinin S, Cunsolo CL, Doglioni C, Blasco MA, Hannon GJ, Maestro R (2002) Transformation of normal human cells in the absence of telomerase activation. Cancer Cell 2:401–413

    Article  CAS  PubMed  Google Scholar 

  163. Lazarov M, Kubo Y, Cai T, Dajee M, Tarutani M, Lin Q, Fang M, Tao S, Green CL, Khavari PA (2002) CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nat Med 8:1105–1114

    Article  CAS  PubMed  Google Scholar 

  164. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5:1164–1170

    Google Scholar 

  165. Blasco MA (2002) Telomerase beyond telomeres. Nat Rev Cancer 2:627–633

    Google Scholar 

  166. Stewart SA, Hahn WC, O’Connor BF, Banner EN, Lundberg AS, Modha P, Mizuno H, Brooks MW, Fleming M, Zimonjic DB, Popescu NC, Weinberg RA (2002) Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A 99:12606–12611

    Google Scholar 

  167. Gonzalez-Suarez E, Flores JM, Blasco MA (2002) Cooperation between p53 mutation and high telomerase transgenic expression in spontaneous cancer development. Mol Cell Biol 22:7291–7301

    Article  CAS  PubMed  Google Scholar 

  168. Smith LL, Coller HA, Roberts JM (2003) Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 5:474–479

    Article  CAS  PubMed  Google Scholar 

  169. Miyachi K, Fujita M, Tanaka N, Sasaki K, Sunagawa M (2002) Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J Exp Clin Cancer Res 21:269–275

    CAS  PubMed  Google Scholar 

  170. Aragona M, De Divitiis O, La Torre D, Panetta S, D’Avella D, Pontoriero A, Morelli M, La Torre I, Tomasello F (2001) Immunohistochemical TRF1 expression in human primary intracranial tumors. Anticancer Res 21:2135–2139

    CAS  PubMed  Google Scholar 

  171. Saito K, Yagihashi A, Nasu S, Izawa Y, Nakamura M, Kobayashi D, Tsuji N, Watanabe N (2002) Gene expression for suppressors of telomerase activity (telomeric-repeat binding factors) in breast cancer. Jpn J Cancer Res 93:253–258

    CAS  PubMed  Google Scholar 

  172. Ohyashiki JH, Hayashi S, Yahata N, Iwama H, Ando K, Tauchi T, Ohyashiki K (2001) Impaired telomere regulation mechanism by TRF1 (telomere-binding protein), but not TRF2 expression, in acute leukemia cells. Int J Oncol 18:593–598

    CAS  PubMed  Google Scholar 

  173. Nakanishi K, Kawai T, Kumaki F, Hiroi S, Mukai M, Ikeda E, Koering CE, Gilson E (2003) Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 9:1105–1111

    CAS  PubMed  Google Scholar 

  174. Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, Blasco MA (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 192:1625–1636

    Article  CAS  PubMed  Google Scholar 

  175. Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421:643–648

    Article  CAS  PubMed  Google Scholar 

  176. Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L, Weiler SR, DePinho RA (2001) Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci U S A 98:3381–3386

    Google Scholar 

  177. Wellinger RJ, Wolf AJ, Zakian VA (1993) Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72:51–60

    Article  CAS  PubMed  Google Scholar 

  178. Dionne I, Wellinger RJ (1998) Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res 26:5365–5371

    Article  CAS  PubMed  Google Scholar 

  179. Evans SK, Lundblad V (2002) The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics 162:1101–1115

    CAS  PubMed  Google Scholar 

  180. Adams Martin A, Dionne I, Wellinger RJ, Holm C (2000) The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis. Mol Cell Biol 20:786–796

    Article  PubMed  Google Scholar 

  181. Grossi S, Puglisi A, Dmitriev PV, Lopes M, Shore D (2004) Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev 18:992–1006

    Article  CAS  PubMed  Google Scholar 

  182. Lange T de (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5:323–329

    Google Scholar 

Download references

Acknowledgements

Work in the laboratory of E.G. is supported by La Ligue Nationale contre le Cancer. M.B. is supported by a training grant from the EC. Work in the laboratory of V.G. was supported by l’Association pour la Recherche sur le Cancer and by le Ministère de la Recherche et des Nouvelles Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Géli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunori, M., Luciano, P., Gilson, E. et al. The telomerase cycle: normal and pathological aspects. J Mol Med 83, 244–257 (2005). https://doi.org/10.1007/s00109-004-0616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0616-2

Keywords

Navigation