Skip to main content

Advertisement

Log in

SUMO wrestling with type 1 diabetes

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Post-translational modification of proteins by phosphorylation, methylation, acetylation, or ubiquitylation represent central mechanisms through which various biological processes are regulated. Reversible covalent modification (i.e., sumoylation) of proteins by the small ubiquitin-like modifier (SUMO) has also emerged as an important mechanism contributing to the dynamic regulation of protein function. Sumoylation has been linked to the pathogenesis of a variety of disorders including Alzheimer’s disease (AD), Huntington’s disease (HD), and type 1 diabetes (T1D). Advances in our understanding of the role of sumoylation suggested a novel regulatory mechanism for the regulation of immune responsive gene expression. In this review, we first update recent advances in the field of sumoylation, then specifically evaluate its regulatory role in several key signaling pathways for immune response and discuss its possible implication in T1D pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ERK :

Extracellular signal-regulated protein kinase

JAK :

Janus kinase

JNK :

c-Jun N-terminal kinase

PIAS :

Protein inhibitors of activated stats

RanBP :

Ran binding protein

STAT :

Signal transducers and activators of transcription

T1D :

Type 1 diabetes

References

  1. Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    Article  CAS  PubMed  Google Scholar 

  2. Su HL, Li SS (2002) Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296:65–73

    Google Scholar 

  3. Guo D, Li M, Zhang Y et al (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36:837–841

    Google Scholar 

  4. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279:27233–27238

    Google Scholar 

  5. Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059

    Google Scholar 

  6. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  7. Muller S, Ledl A, Schmidt D (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23:1998–2008

    Article  PubMed  Google Scholar 

  8. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Google Scholar 

  9. Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F (2004) The RanBP2 SUMO E3 ligase is neither. Nat Struct Mol Biol 11:984–991

    Google Scholar 

  10. Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19:2638–2644

    Google Scholar 

  11. Wong KA, Kim R, Christofk H, Gao J, Lawson G, Wu H (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol Cell Biol 24:5577–5586

    Google Scholar 

  12. Roth W, Sustmann C, Kieslinger M et al (2004) PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173:6189–6199

    Google Scholar 

  13. Freiman RN, Tjian R (2003) Regulating the regulators: lysine modifications make their mark. Cell 112:11–17

    Google Scholar 

  14. Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101:14373–14378

    Google Scholar 

  15. Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374

    Google Scholar 

  16. Li Y, Wang H, Wang S, Quon D, Liu YW, Cordell B (2003) Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci USA 100:259–264

    Google Scholar 

  17. Neve RL (2003) A new wrestler in the battle between alpha- and beta-secretases for cleavage of APP. Trends Neurosci 26:461–463

    Google Scholar 

  18. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    Article  CAS  PubMed  Google Scholar 

  19. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    Article  CAS  PubMed  Google Scholar 

  20. Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351

    Google Scholar 

  21. Wohlschlegel JA, Johnson ES, Reed SI, Yates JR III (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668

    Google Scholar 

  22. Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268

    Google Scholar 

  23. Vertegaal AC, Ogg SC, Jaffray E et al (2004) A proteomic study of SUMO-2 target proteins. J Biol Chem 279:33791–33798

    Google Scholar 

  24. Zhao Y, Kwon SW, Anselmo A, Kaur K, White MA (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279:20999–21002

    Google Scholar 

  25. Li T, Evdokimov E, Shen RF et al (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci USA 101:8551–8556

    Google Scholar 

  26. Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4:56–72

    Google Scholar 

  27. Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    Google Scholar 

  28. Hilgarth RS, Murphy LA, Skaggs HS, Wilkerson DC, Xing H, Sarge KD (2004) Regulation and function of SUMO modification. J Biol Chem 279(52):53899–53902

    Google Scholar 

  29. Everett RD, Lomonte P, Sternsdorf T, van Driel R, Orr A (1999) Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 112:4581–4588

    Google Scholar 

  30. Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275:13321–13329

    Google Scholar 

  31. Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137–142

    Article  CAS  PubMed  Google Scholar 

  32. Caamano J, Hunter CA (2002) NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 15:414–429

    Google Scholar 

  33. Takaesu G, Kishida S, Hiyama A et al (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649–658

    Article  CAS  PubMed  Google Scholar 

  34. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Google Scholar 

  35. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Google Scholar 

  36. Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84:331–334

    Google Scholar 

  37. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24

    Google Scholar 

  38. Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54

    Article  Google Scholar 

  39. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655

    Google Scholar 

  40. Davoodi-Semiromi A, Laloraya M, Kumar GP, Purohit S, Jha RK, She JX (2004) A mutant Stat5b with weaker DNA binding affinity defines a key defective pathway in nonobese diabetic mice. J Biol Chem 279:11553–11561

    Google Scholar 

  41. Flodstrom-Tullberg M, Yadav D, Hagerkvist R et al (2003) Target cell expression of suppressor of cytokine signaling-1 prevents diabetes in the NOD mouse. Diabetes 52:2696–2700

    PubMed  Google Scholar 

  42. Darville MI, Eizirik DL (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41:1101–1108

    Article  CAS  PubMed  Google Scholar 

  43. Chung CD, Liao J, Liu B et al (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805

    Google Scholar 

  44. Liu B, Gross M, Hoeve J ten, Shuai K (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci USA 98:3203–3207

    Google Scholar 

  45. Liu B, Liao J, Rao X et al (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 95:10626–10631

    Google Scholar 

  46. Arora T, Liu B, He H et al (2003) PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J Biol Chem 278:21327–21330

    Google Scholar 

  47. Ungureanu D, Vanhatupa S, Kotaja N et al (2003) PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102:3311–3313

    Google Scholar 

  48. Rogers RS, Horvath CM, Matunis MJ (2003) SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J Biol Chem 278:30091–30097

    Google Scholar 

  49. Wormald S, Hilton DJ (2004) Inhibitors of cytokine signal transduction. J Biol Chem 279:821–824

    Article  Google Scholar 

  50. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Google Scholar 

  51. Vogt PK (2002) Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer 2:465–469

    Google Scholar 

  52. Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85:747–752

    Google Scholar 

  53. Foletta VC, Segal DH, Cohen DR (1998) Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol 63:139–152

    Google Scholar 

  54. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    Article  CAS  PubMed  Google Scholar 

  55. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M (1999) Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 13:1297–1308

    Google Scholar 

  56. Funakoshi-Tago M, Tago K, Sonoda Y, Tominaga S, Kasahara T (2003) TRAF6 and C-SRC induce synergistic AP-1 activation via PI3-kinase-AKT-JNK pathway. Eur J Biochem 270:1257–1268

    Google Scholar 

  57. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Google Scholar 

  58. Chanda SK, White S, Orth AP et al (2003) Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc Natl Acad Sci USA 100:12153–12158

    Google Scholar 

  59. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  60. Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA (1994) Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 269:26396–26401

    Google Scholar 

  61. Lgssiar A, Hassan M, Schott-Ohly P et al (2004) Interleukin-11 inhibits NF-kappaB and AP-1 activation in islets and prevents diabetes induced with streptozotocin in mice. Exp Biol Med 229:425–436

    Google Scholar 

  62. Bennett BL, Satoh Y, Lewis AJ (2003) JNK: a new therapeutic target for diabetes. Curr Opin Pharmacol 3:420–425

    Google Scholar 

  63. Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275:13321–13329

    Google Scholar 

  64. Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99:2872–2877

    Google Scholar 

  65. Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22:5222–5234

    Google Scholar 

  66. Salinas S, Briancon-Marjollet A, Bossis G et al (2004) SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. J Cell Biol 165:767–773

    Google Scholar 

  67. Matsuzaki K, Minami T, Tojo M et al (2003) Serum response factor is modulated by the SUMO-1 conjugation system. Biochem Biophys Res Commun 306:32–38

    Google Scholar 

  68. Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:C739–C744

    Google Scholar 

  69. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  70. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  71. Larsen PM, Fey SJ, Larsen MR et al (2001) Proteome analysis of interleukin-1beta-induced changes in protein expression in rat islets of Langerhans. Diabetes 50:1056–1063

    PubMed  Google Scholar 

  72. John NE, Andersen HU, Fey SJ et al (2000) Cytokine- or chemically derived nitric oxide alters the expression of proteins detected by two-dimensional gel electrophoresis in neonatal rat islets of Langerhans. Diabetes 49:1819–1829

    Google Scholar 

  73. Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276:48879–48886

    Article  CAS  PubMed  Google Scholar 

  74. Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  75. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    CAS  PubMed  Google Scholar 

  76. Moroi Y, Mayhew M, Trcka J et al (2000) Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci USA 97:3485–3490

    Google Scholar 

  77. Cho BK, Palliser D, Guillen E et al (2000) A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 12:263–272

    Google Scholar 

  78. Binder RJ, Anderson KM, Basu S, Srivastava PK (2000) Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165:6029–6035

    Google Scholar 

  79. Wang Y, Kelly CG, Karttunen JT et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983

    Google Scholar 

  80. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135

    Google Scholar 

  81. Bausinger H, Lipsker D, Ziylan U et al (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32:3708–3713

    Google Scholar 

  82. Millar DG, Garza KM, Odermatt B et al (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9:1469–1476

    Google Scholar 

  83. Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci USA 100:15824–15829

    Google Scholar 

  84. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    CAS  PubMed  Google Scholar 

  85. Le Goff P, Le Drean Y, Le Peron C, Jossic-Corcos C, Ainouche A, Michel D (2004) Intracellular trafficking of heat shock factor 2. Exp Cell Res 294:480–493

    Google Scholar 

  86. He H, Soncin F, Grammatikakis N et al (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278:35465–35475

    Google Scholar 

  87. Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570

    Google Scholar 

  88. Hilgarth RS, Hong Y, Park-Sarge OK, Sarge KD (2003) Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. Biochem Biophys Res Commun 303:196–200

    Google Scholar 

  89. Hietakangas V, Ahlskog JK, Jakobsson AM et al (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968

    Article  CAS  PubMed  Google Scholar 

  90. Hilgarth RS, Hong Y, Park-Sarge OK, Sarge KD (2003) Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. Biochem Biophys Res Commun 303:196–200

    Google Scholar 

  91. Hietakangas V, Ahlskog JK, Jakobsson AM et al (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968

    Article  CAS  PubMed  Google Scholar 

  92. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24:488–522

    Google Scholar 

  93. Smith DF, Whitesell L, Katsanis E (1998) Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Rev 50:493–514

    Google Scholar 

  94. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    Google Scholar 

  95. Tian S, Poukka H, Palvimo JJ, Janne OA (2002) Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J 367:907–911

    Google Scholar 

  96. Le Drean Y, Mincheneau N, Le Goff P, Michel D (2002) Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 143:3482–3489

    Google Scholar 

  97. Mathis D, Vence L, Benoist C (2001) Beta-cell death during progression to diabetes. Nature 414:792–798

    Article  CAS  PubMed  Google Scholar 

  98. Onengut-Gumuscu S, Concannon P (2002) Mapping genes for autoimmunity in humans: type 1 diabetes as a model. Immunol Rev 190:182–194

    Google Scholar 

  99. Owerbach D, Pina L, Gabbay KH (2004) A 212-kb region on chromosome 6q25 containing the TAB2 gene is associated with susceptibility to type 1 diabetes. Diabetes 53:1890–1893

    Google Scholar 

  100. Rasschaert J, Liu D, Kutlu B et al (2003) Global profiling of double stranded RNA- and IFN-gamma-induced genes in rat pancreatic beta cells. Diabetologia 46:1641–1657

    Article  CAS  PubMed  Google Scholar 

  101. Gylvin T, Bergholdt R, Nerup J, Pociot F (2002) Characterization of a nuclear-factor-kappa B (NFkappaB) genetic marker in type 1 diabetes (T1DM) families. Genes Immun 3:430–432

    Google Scholar 

  102. Hegazy DM, O’Reilly DA, Yang BM, Hodgkinson AD, Millward BA, Demaine AG (2001) NFkappaB polymorphisms and susceptibility to type 1 diabetes. Genes Immun 2:304–308

    Google Scholar 

  103. Mabley JG, Hasko G, Liaudet L et al (2002) NFkappaB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. J Endocrinol 173:457–464

    Google Scholar 

  104. Lamhamedi-Cherradi SE, Zheng S, Hilliard BA et al (2003) Transcriptional regulation of type I diabetes by NF-kappa B. J Immunol 171:4886–4892

    Google Scholar 

  105. Smyth D, Lowe CE, Howon JMM et al (2005) Lack of support for a genetic association of the SUMO4 Met55Val polymorphism with type 1 diabetes. Nat Genet (in press)

  106. Qu H, Bharaj B, Liu X-Q et al (2005) Is the association of SUMO4 with type 1 diabetes dependent on ethnic background? Nat Genet (in press)

  107. Park Y, Park S, Kang J et al (2005) Additional support for a genetic association between SUMO4 and type 1 diabetes in the Korean population. Nat Genet (in press)

  108. Wang C-Y, Yang P, She J-X (2005) Genetic heterogeneity of the IDDM5 (SUMO4) locus. Nat Genet (in press)

Download references

Acknowledgements

This work was supported by the CIGP program of the Medical College of Georgia, the Dean of the Medical School’s special funding of the Medical College of Georgia, the Juvenile Diabetes Research Foundation International (1-2004-235), the American Diabetes Association (1-05-JF-47) to C.Y.W. and the National Institute of Child Health and Development (HD37800) to J.X.S. We thank Dr. Sarah Eckenrode for her assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Guo, D., Isales, C.M. et al. SUMO wrestling with type 1 diabetes. J Mol Med 83, 504–513 (2005). https://doi.org/10.1007/s00109-005-0645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0645-5

Keywords

Navigation