Skip to main content
Log in

The endoproteolytic maturation of progastrin and procholecystokinin

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The homologous brain-gut propeptides, procholecystokinin (proCCK) and progastrin, both undergo extensive posttranslational maturation in specific neuroendocrine cells. The process comprises multiple endoproteolytic cleavages at mono- and dibasic sites, in addition to exoproteolytic trimmings and amino acid derivatizations. Knockout of prohormone convertases (PCs) in mice and studies in cell lines indicate that PC1, PC2 and, to a minor extent, PC5, are responsible for most of the endoproteolytic cleavages of both prohormones. Progastrin in antral G-cells is cleaved by PC1 at two di-Arg sites, R36R37 and R73R74, whereas, PC2 only cleaves at the single di-Lys site, K53K54. Pituitary corticotrophs and intestinal TG-cells, both of which express gastrin, do not cleave K53K54 due to lack of PC2. In proCCK five monobasic (R25, R44, R50, K61 and R75) as well as a single dibasic site (R85R86) can all be cleaved by both PC1 and PC2. But the cleavage differs in a cell-specific manner in that PC1 is responsible for the entire endoproteolytic cleavage in intestinal endocrine I-cells, except for perhaps the K61 site. In contrast PC2 is responsible for most endoproteolysis of proCCK in the cerebral CCK-neurons, which do not express PC1 in significant amounts. Moreover, PC5 appears to contribute to a minor extent to the neuronal proCCK and to the antral progastrin processing. This review emphasizes that prohormone convertases play a decisive but substrate and cell-specific role in the biosynthetic maturation of gastrin and CCK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edkins JS (1905) On the chemical mechanism of gastric secretion. Proc Roy Soc Ser B 76:376

    Article  Google Scholar 

  2. Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 86:599–613

    CAS  Google Scholar 

  3. Harper AA, Raper HS (1943) Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. J Physiol 102:115–125

    PubMed  CAS  Google Scholar 

  4. Jorpes E, Mutt V (1966) Cholecystokinin and pancreozymin, one single hormone? Acta Physiol Scand 66:196–202

    PubMed  CAS  Google Scholar 

  5. Gregory H, Hardy PM, Jones DS, Kenner GW, Sheppard RC (1964) The antral hormone gastrin. Structure of gastrin. Nature 204:931–933

    Article  PubMed  CAS  Google Scholar 

  6. Mutt V, Jorpes JE (1968) Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem 6:156–162

    Article  PubMed  CAS  Google Scholar 

  7. Anastasi A, Erspamer W, Endean R (1967) Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea. Experientia 23:699–700

    Article  PubMed  CAS  Google Scholar 

  8. Larsson L-I, Rehfeld JF (1977) Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature 269:335–338

    Article  PubMed  CAS  Google Scholar 

  9. Johnsen AH, Rehfeld JF (1990) Cionin: A disulfotyrosyl hybrid of cholecystokinin and gastrin from the neural ganglion of the protochordate Ciona intestinalis. J Biol Chem 265:3054–3058

    PubMed  CAS  Google Scholar 

  10. Rehfeld JF (1998) The new biology of gastrointestinal hormones. Physiol Rev 78:1087–1108

    PubMed  CAS  Google Scholar 

  11. Rehfeld JF (1978) Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem 253:4022–4030

    PubMed  CAS  Google Scholar 

  12. Crawley JE (1985) Distribution of cholecystokinin and other neuropeptides: why is this peptide different from all other peptides? Ann N Y Acad Sci 448:1–8

    Article  PubMed  CAS  Google Scholar 

  13. Johnson LR (1989) In: Makhlouf GM (ed) Handbook of physiology. The gastrointestinal system: neural and endocrine biology (Section 6, vol. 2). American Physiological Society, Bethesda, Maryland, pp 291310

    Google Scholar 

  14. Johnson LR (1976) The trophic action of gastrointestinal hormones. Gastroenterology 70:278–288

    PubMed  CAS  Google Scholar 

  15. Anastasi A, Bertaccini G, Cei JM, de Caro G, Erspamer V, Impicciatore M (1969) Structure and pharmacological actions of phyllocaerulein, a caerulein-like nonapeptide: its occurrence in extracts of the skin of Phyllomedusa sauvagei and related Phyllomedusa species. Br J Pharmacol 37:198–206

    PubMed  CAS  Google Scholar 

  16. Morley JS, Tracy HJ, Gregory RA (1965) Structure–function relationships in the active C-terminal tetrapeptide sequence of gastrin. Nature 207:1356–1359

    Article  PubMed  CAS  Google Scholar 

  17. Andersen BN (1985) Species variation in the tyrosine sulfation of mammalian gastrins. Gen Comp Endocrinol 58:44–50

    Article  PubMed  CAS  Google Scholar 

  18. Seva C, Dickinson CJ, Yamada T (1994) Growth promoting effects of glycine-extended progastrin. Science 265:410–412

    Article  PubMed  CAS  Google Scholar 

  19. Dockray GJ, Varro A, Dimaline R, Wang T (2001) The gastrins: their production and biological activities. Annu Rev Physiol 63:119–139

    Article  PubMed  CAS  Google Scholar 

  20. Rehfeld JF (1998) Accurate measurement of cholecystokinin in plasma. Clin Chem 44:991–1001

    PubMed  CAS  Google Scholar 

  21. Rehfeld JF (1978) Localisation of gastrins to neuro- and adenohypophysis. Nature 271:771–773

    Article  PubMed  CAS  Google Scholar 

  22. Walsh JH, Isenberg JI, Ansfield J, Maxwell V (1976) Clearance and acid-stimulating action of human big and little gastrins in duodenal ulcer subjects. J Clin Invest 57:1125–1131

    Article  PubMed  CAS  Google Scholar 

  23. Kopin AS, Lee Y-M, McBride EW, Miller LJ, Lu M, Lin HY, Kolakowski LF, Beinbom M (1992) Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA 89:3605–3609

    Article  PubMed  CAS  Google Scholar 

  24. Wank SA, Harkins R, Jensen RT, Shapira H, de Weerth A, Slattery T (1992) Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci USA 89:3125

    Article  PubMed  CAS  Google Scholar 

  25. Brodin K, Nilsson G, Håkanson R, Sundler F (1979) Time dependent increase in duodenal gastrin concentration in dogs following antrectomy. Acta Physiol Scand 47:112–116

    Google Scholar 

  26. Brand SJ, Klarlund J, Schwartz TW, Rehfeld JF (1984) Biosynthesis of tyrosine-0-sulfated gastrins in rat antral mucosa. J Biol Chem 259:13246–13252

    PubMed  CAS  Google Scholar 

  27. Hilsted L, Rehfeld JF (1987) α-carboxyamidation of antral progastrin: relation to other post-translational modifications. J Biol Chem 262:16953–16957

    PubMed  CAS  Google Scholar 

  28. Jensen S, Borch K, Hilsted L, Rehfeld JF (1989) Progastrin processing during antral G-cell hypersecretion in humans. Gastroenterology 96:1063–1070

    PubMed  CAS  Google Scholar 

  29. Sugano K, Aponte GW, Yamada T (1985) Identification and characterization of glycine-extended post-translational processing intermediates of progastrin in porcine stomach. J Biol Chem 260:11724–11729

    PubMed  CAS  Google Scholar 

  30. Rehfeld JF, Lindberg I, Friis-Hansen L (2002) Progastrin processing differs in 7B2 and PC2 knockout animals: a role for 7B2 independent of action on PC2. FEBS Lett 510:89–93

    Article  PubMed  CAS  Google Scholar 

  31. Eipper BA, Stoffers DA, Mains RE (1992) The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci 15:57–85

    Article  PubMed  CAS  Google Scholar 

  32. Dockray GJ, Varro A, Desmond H, Young J, Gregory H, Gregory RA (1987) Posttranslational processing of the porcine gastrin precursor by phosphorylation of the COOH-terminal fragment. J Biol Chem 262:8643–8647

    PubMed  CAS  Google Scholar 

  33. Rehfeld JF, Johnsen AH (1994) Identification of gastrin component I as gastrin71, the largest possible bioactive progastrin product. Eur J Biochem 223:765–773

    Article  PubMed  CAS  Google Scholar 

  34. Rehfeld JF, Hansen CP, Johnsen AH (1995) Post-poly (Glu) cleavage and degradation modified by O-sulfated tyrosine: a novel posttranslational processing mechanism. EMBO J 12:389–396

    Google Scholar 

  35. Borch K, Renvall H, Liedberg G, Andersen BN (1986) Relations between circulating gastrin and endocrine cell proliferation in the atrophic gastric fundic mucosa. Scand J Gastroenterol 21:357–363

    Article  PubMed  CAS  Google Scholar 

  36. Larsson L-I, Rehfeld JF (1979) A peptide resembling the COOH-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type. Nature 277:575–578

    Article  PubMed  CAS  Google Scholar 

  37. Lüttichau HR, van Solinge WW, Nielsen FC, Rehfeld JF (1993) Developmental expression of the gastrin and cholecystokinin genes in rat colon. Gastroenterology 104:1092–1098

    PubMed  Google Scholar 

  38. van Solinge WW, Nielsen FC, Friis-Hansen L, Falkmer UG, Rehfeld JF (1993) Expression but incomplete maturation of progastrin in colorectal carcinomas. Gastroenterology 104:1099–1107

    PubMed  Google Scholar 

  39. Larsson L-I, Rehfeld JF, Håkanson R, Sundler F (1976) Pancreatic gastrin in foetal and neonatal rats. Nature 262:607–611

    Article  Google Scholar 

  40. Brand SJ, Andersen BN, Rehfeld JF (1984) Complete tyrosyl-0-sulfation of gastrin in neonatal rat pancreas. Nature 309:456–458

    Article  PubMed  CAS  Google Scholar 

  41. Bardram L, Hilsted L, Rehfeld JF (1990) Progastrin expression in mammalian pancreas. Proc Natl Acad Sci USA 87:298–302

    Article  PubMed  CAS  Google Scholar 

  42. Larsson L-I, Rehfeld JF (1981) Pituitary gastrins occur in corticotrophs and melanotrophs. Science 213:768–770

    Article  PubMed  CAS  Google Scholar 

  43. Rehfeld JF, Hansen HF, Larsson L-I, Stengaard-Pedersen K, Thorn NA (1984) Gastrin and cholecystokinin in pituitary neurons. Proc Natl Acad Sci USA 81:1902–1905

    Article  PubMed  CAS  Google Scholar 

  44. Rehfeld JF (1986) Accumulation of non-amidated preprogastrin and preprocholecystokinin products in the porcine pituitary corticotrophs: evidence of post-translational control of cell differentiation. J Biol Chem 261:5841–5847

    PubMed  CAS  Google Scholar 

  45. Rehfeld JF (1991) Progastrin and its products in the cerebellum. Neuropeptides 20:239–245

    Article  PubMed  CAS  Google Scholar 

  46. Uvnäs-Wallensten K, Rehfeld JF, Larsson L-I, Uvnäs B (1977) Heptadecapeptide gastrin in the vagal nerve. Proc Natl Acad Sci USA 74:5707–5710

    Article  PubMed  Google Scholar 

  47. Bardram L, Hilsted L, Rehfeld JF (1989) Cholecystokinin, gastrin and their precursors in pheochromocytomas. Acta Endocrinol 120:479–484

    PubMed  CAS  Google Scholar 

  48. Rehfeld JF, Bardram L, Hilsted L (1989) Gastrin in bronchogenic carcinomas: constant expression but variable processing of progastrin. Cancer Res 49:2840–2843

    PubMed  CAS  Google Scholar 

  49. van Solinge WW, Ødum L, Rehfeld JF (1993) Ovarian cancer express and process progastrin. Cancer Res 53:1823–1830

    PubMed  Google Scholar 

  50. Schalling M, Persson H, Pelto-Huikko M, Ødum L, Ekman P, Gottlieb C, Hökfelt T, Rehfeld JF (1990) Expression and localization of gastrin mRNA and peptide in human spermatogenic cells. J Clin Invest 86:660–669

    Article  PubMed  CAS  Google Scholar 

  51. Rehfeld JF, van Solinge WW (1994) The tumor biology of gastrin and cholecystokinin. Adv Cancer Res 63:295–346

    PubMed  CAS  Google Scholar 

  52. Rehfeld JF, Larsson LI (1981) Pituitary gastrin: different processing in corticotrophs and melanotrophs. J Biol Chem 256:10426–10429

    PubMed  CAS  Google Scholar 

  53. Zhou A, Bloomquist BT, Mains RE (1993) The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem 268:1763–1769

    PubMed  CAS  Google Scholar 

  54. Furuta M, Yano H, Zhou A, Rouillé Y, Holst JJ, Carroll R, Ravazzola M, Orci L, Furuta H, Steiner DF (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci USA 94:6646–6651

    Article  PubMed  CAS  Google Scholar 

  55. Larsson L-I (1980) Gastrointestinal cells producing endocrine, neurocrine and paracrine messengers. Clin Gastroenterol 9:485–516

    PubMed  CAS  Google Scholar 

  56. Golterman NR, Rehfeld JF, Petersen HR (1980) In vivo biosynthesis of cholecystokinin in rat cerebral cortex. J Biol Chem 255:6181–6185

    Google Scholar 

  57. Stengaard-Pedersen K, Larsson L-I, Fredens K, Rehfeld JF (1984) Modulation of cholecystokinin concentration in the rat hippocampus by chelation of heavy metals. Proc Natl Acad Sci USA 81:5867–5870

    Article  Google Scholar 

  58. Blanke SE, Johnsen AH, Rehfeld JF (1993) N-terminal fragments of intestinal cholecystokinin. Regul Pept 46:575–582

    Article  PubMed  CAS  Google Scholar 

  59. Dockray GJ, Gregory RA, Hutchison JB, Harris JI, Runswick MJ (1978) Isolation, structure and biological activity of two cholecystokinin octapeptides from sheep brain. Nature 274:711–713

    Article  PubMed  CAS  Google Scholar 

  60. Eberlein GA, Eysselein VE, Davis MT, Lee TD, Shively JE, Grandt D, Niebel N, Williams R, Moessner J, Zeeh J, Meyer HE, Goebell H, Reeve JR (1992) Patterns of prohormone processing. Order revealed by a new procholecystokinin-derived peptide. J Biol Chem 267:1517–1521

    PubMed  CAS  Google Scholar 

  61. Eng J, Shiina Y, Pan YC, Blacher R, Chang M, Stein S, Yalow RS (1983) Pig brain contains cholecystokinin octapeptide and several cholecystokinin desoctapeptides. Proc Natl Acad Sci USA 80:6381–6385

    Article  PubMed  CAS  Google Scholar 

  62. Mutt V, Jorpes JE (1971) Hormonal polypeptides of the upper intestine. Biochem J 125:57P–58P

    PubMed  CAS  Google Scholar 

  63. Mutt V (1976) Further investigations of intestinal hormonal polypeptides. Clin Endocrinol 5:175S–183S

    Article  Google Scholar 

  64. Reeve JR, Eysselein VE, Eberlein GA, Chew P, Ho F-J, Huebner VD, Shively JE, Lee TD, Liddle RA (1991) Characterization of canine intestinal cholecystokinin58 lacking its carboxyl-terminal nonapeptide. Evidence for similar posttranslational processing in brain and gut. J Biol Chem 266:13770–13776

    PubMed  CAS  Google Scholar 

  65. Rehfeld JF, Hansen HF (1986) Characterization of preprocholecystokinin products in the porcine cerebral cortex: evidence of different processing pathways. J Biol Chem 261:5832–5840

    PubMed  CAS  Google Scholar 

  66. Eng J, Du BH, Pan YE, Chang M, Hulmes JD, Yalow RS (1984) Purification and sequencing of a rat intestinal 22 amino acid C-terminal CCK fragment. Peptides 5:1203–1206

    Article  PubMed  CAS  Google Scholar 

  67. Rehfeld JF, Lindberg I, Friis-Hansen L (2002) Increased synthesis but decreased processing of neuronal proCCK in prohormone convertase 2 and 7B2 knockout animals. J Neurochem 83:1329–1337

    Article  PubMed  CAS  Google Scholar 

  68. Reeve JR, Eysselein V, Walsh JH, Ben-Avram CH, Shively JE (1986) New molecular forms of cholecystokinin. Microsequence analysis of forms previously characterized by chromatographic methods. J Biol Chem 261:16392–16397

    PubMed  CAS  Google Scholar 

  69. Rehfeld JF, Sun G, Christensen T, Hillingsø JG (2001) The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33. J Clin Endocrinol Metab 86:251–258

    Article  PubMed  CAS  Google Scholar 

  70. Shively J, Reeve JR, Eysselein VE, Ben-Avram C, Vigna SR, Walsh JH (1987) CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine. Am J Physiol 252:G272–G275

    PubMed  CAS  Google Scholar 

  71. Cantor P, Rehfeld JF (1989) Cholecystokinin in pig plasma: release of components devoid of a bioactive C terminus. Am J Physiol 256:G53–G61

    PubMed  CAS  Google Scholar 

  72. Eberlein GA, Eysselein VE, Goebell H (1988) Cholecystokinin-58 is the major molecular form in man, dog and cat but not in pig, beef and rat intestine. Peptides 9:993–998

    Article  PubMed  CAS  Google Scholar 

  73. Rehfeld JF (1994) The molecular nature of cholecystokinin in plasma. An in vivo study in rabbits. Scand J Gastroenterol 29:110–121

    Article  PubMed  CAS  Google Scholar 

  74. Larsson L-I, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218

    Article  PubMed  CAS  Google Scholar 

  75. Mogensen NW, Hilsted L, Bardram L, Rehfeld JF (1990) Procholecystokinin processing in the rat cerebral cortex during development. Dev Brain Res 54:81–86

    Article  CAS  Google Scholar 

  76. Rehfeld JF, Mogensen NW, Bardram L, Hilsted L, Monstein HJ (1992) Expression, but failing maturation of procholecystokinin in cerebellum. Brain Res 576:111–119

    Article  PubMed  CAS  Google Scholar 

  77. Rehfeld JF (1987) Preprocholecystokinin processing in the normal human anterior pituitary. Proc Natl Acad Sci USA 84:3019–3024

    Article  PubMed  CAS  Google Scholar 

  78. Rehfeld JF, Johnsen AH, Ødum L, Bardram L, Schifter S, Scopsi L (1990) Nonsulfated cholecystokinin in human medullary thyroid carcinomas. J Endocrinol 124:501–506

    Article  PubMed  CAS  Google Scholar 

  79. Ghatei MA, Sheppard MN, O’Shaughnessy DJ, Adrian TE, Gregor GM, Polak JM, Bloom SR (1982) Regulatory peptides in the mammalian respiratory tract. Endocrinology III:1248–1254

    Article  Google Scholar 

  80. Persson H, Rehfeld JF, Ericsson A, Schalling M, Pelto-Huikko M, Hökfelt T (1989) Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization. Proc Natl Acad Sci USA 86:6166–6170

    Article  PubMed  CAS  Google Scholar 

  81. Zhu X, Zhou A, Dey A, Norrbom C, Caroll R, Zhang C, Laurent V, Lindberg I, Ugleholdt R, Holst JJ, Steiner DF (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 99:10293–10298

    Article  PubMed  CAS  Google Scholar 

  82. Vishnuvardhan D, Conolly K, Cain B, Beinfeld MC (2000) PC2 and 7B2 null mice demonstrate that PC2 is essential for normal proCCK processing. Biochem Biophys Res Commun 273:188–191

    Article  PubMed  CAS  Google Scholar 

  83. Cain BM, Conolly K, Blum A, Vishnuvardhan D, Marchand JE, Beinfeld M (2003) Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2 and PC5 in rat brain. J Comp Neurol 467:307–325

    Article  PubMed  CAS  Google Scholar 

  84. Beinfeld MC, Blum A, Vishnuvardhan D, Fanous S, Marchand JE (2005) Cholecystokinin levels in prohormone convertase 2 knock-out mouse brain regions reveal a complex phenotype of region-specific alterations. J Biol Chem 280:38410–38415

    Article  PubMed  CAS  Google Scholar 

  85. Cain BM, Vishnuvardhan D, Beinfeld M (2001) Neuronal cell lines expressing PC5, but not PC1 and PC2, process proCCK into glycine-extended CCK 12 and 22. Peptides 22:1271–1277

    Article  PubMed  CAS  Google Scholar 

  86. Reynolds NA, Blum A, Kitagawa K, Beinfeld M (2006) Inhibition of PC5 expression decreases CCK secretion and increases PC2 expression. Peptides 27(4):901–904

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The expert secretarial assistance of Christina Bak Fleischer and Birgitte Petersen is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens F. Rehfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehfeld, J.F. The endoproteolytic maturation of progastrin and procholecystokinin. J Mol Med 84, 544–550 (2006). https://doi.org/10.1007/s00109-006-0055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0055-3

Keywords

Navigation