Skip to main content
Log in

3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3

  • Rapid Communication
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Patients with glutaryl-CoA dehydrogenase (GCDH) deficiency accumulate glutaric acid (GA) and 3-hydroxyglutaric acid (3OH-GA) in their blood and urine. To identify the transporter mediating the translocation of 3OH-GA through membranes, kidney tissue of Gcdh−/− mice have been investigated because of its central role in urinary excretion of this metabolite. Using microarray analyses of kidney-expressed genes in Gcdh−/− mice, several differentially expressed genes encoding transporter proteins were identified. Real-time polymerase chain reaction analysis confirmed the upregulation of the sodium-dependent dicarboxylate cotransporter 3 (NaDC3) and the organic cation transporter 2 (OCT2). Expression analysis of NaDC3 in Xenopus laevis oocytes by the two-electrode-voltage-clamp technique demonstrated the sodium-dependent translocation of 3OH-GA with a K M value of 0.95 mM. Furthermore, tracer flux measurements in Chinese hamster ovary cells overexpressing OCT2 showed that 3OH-GA inhibited significantly the uptake of methyl-4-phenylpyridinium, whereas 3OH-GA is not transported by OCT2. The data demonstrate for the first time the membrane translocation of 3OH-GA mediated by NaDC3 and the cis-inhibitory effect on OCT2-mediated transport of cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

GA1:

glutaric aciduria type 1

GA:

glutaric acid

Gcdh:

glutaryl-CoA dehydrogenase

NaDC3:

sodium-dependent dicarboxylate cotransporter 3

3OH-GA:

3-hydroxyglutaric acid

OCT2:

organic cation transporter 2

Slc:

solute carrier

References

  1. Goodman SI, Frerman FE (2001) Organic acidemias due to defects in lysine oxidation: 2-ketoadipic acidemia and glutaric acidemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2195–2204

    Google Scholar 

  2. Ullrich K, Flott-Rahmel B, Schluff P, Musshoff U, Das A, Lücke T, Steinfeld R, Christensen E, Jakobs C, Ludolph A, Neu A, Röper R (1999) Glutaric aciduria type I: pathomechanism of neurodegeneration. J Inherit Metab Dis 22:392–403

    Article  PubMed  CAS  Google Scholar 

  3. Kölker S, Koeller DM, Okun JG, Hoffmann GF (2004) Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol 55:7–12

    Article  PubMed  CAS  Google Scholar 

  4. Mühlhausen C, Ott N, Chalajour F, Tilki D, Freudenberg F, Shahhossini M, Thiem J, Ullrich K, Braulke T, Ergün S (2006) Endothelial effects of 3-hydroxyglutaric acid: implications for glutaric aciduria type I. Pediatr Res 59:196–202

    Article  PubMed  Google Scholar 

  5. Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, Woontner M, Goodman SI, Cheng KC (2006) A diet-induced mouse model for glutaric aciduria type I. Brain 129:899–910

    Article  PubMed  Google Scholar 

  6. Koeller DM, Woontner M, Crnic LS, Kleinschmidt-DeMasters B, Stephens J, Hunt EL, Goodman SI (2002) Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type I. Hum Mol Genet 11:347–357

    Article  PubMed  CAS  Google Scholar 

  7. Boettger T, Hübner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878

    Article  PubMed  CAS  Google Scholar 

  8. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  10. Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, Ermert L, Kummer W, Koepsell H (2005) Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol 33:79–88

    Article  PubMed  CAS  Google Scholar 

  11. Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266

    Article  PubMed  CAS  Google Scholar 

  12. Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95–158

    Article  PubMed  CAS  Google Scholar 

  13. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

    PubMed  CAS  Google Scholar 

  14. Popp C, Gorboulev V, Müller TD, Gorbunov D, Shatskaya N, Koepsell H (2005) Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol Pharmacol 67:1600–1611

    Article  PubMed  CAS  Google Scholar 

  15. Pajor AM, Gangula R, Yao X (2001) Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol 280:C1215–C1223

    PubMed  CAS  Google Scholar 

  16. Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G (2005) Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions. Am J Physiol Renal Physiol 288:F792–F799

    Article  PubMed  CAS  Google Scholar 

  17. Wada M, Shimada A, Fujita T (2006) Functional characterization of Na+-coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex. Brain Res 1081:92–100

    Article  PubMed  CAS  Google Scholar 

  18. Yodoya E, Wada M, Shimada A, Katsukawa H, Okada N, Yamamoto A, Ganapathy V, Fujita T (2006) Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. J Neurochem 97:162–173

    Article  PubMed  CAS  Google Scholar 

  19. Schousboe A, Westergaard N, Waagepentersen HS, Larsson OM, Bakken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105

    Article  PubMed  CAS  Google Scholar 

  20. Peng LA, Schousboe A, Hertz L (1991) Utilization of α-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem Res 16:29–34

    Article  PubMed  CAS  Google Scholar 

  21. Sauer SW, Okun JG, Fricker G, Mahringer A, Müller I, Crnic LS, Mühlhausen C, Hoffmann GF, Hörster F, Goodman SI, Harding CO, Koeller DM, Kölker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97:899–910

    Article  PubMed  CAS  Google Scholar 

  22. Bai X, Chen X, Feng Z, Hou K, Zhang P, Fu B, Shi S (2006) Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3. J Cell Physiol 206:821–830

    Article  PubMed  CAS  Google Scholar 

  23. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  PubMed  CAS  Google Scholar 

  24. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H (2001) Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol 281:F454–F468

    PubMed  CAS  Google Scholar 

  25. Aruga S, Wehrli S, Kaissling B, Moe OW, Preisig PA, Pajor AM, Alpern RJ (2000) Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int 58:206–215

    Article  PubMed  CAS  Google Scholar 

  26. Curthoys NP, Gstraunthaler G (2001) Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol 281:F381–F390

    PubMed  CAS  Google Scholar 

  27. Preisig PA (1999) A cell cycle-dependent mechanism of renal tubule epithelial cell hypertrophy. Kidney Int 56:1193–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (GRK 336 to Keyser and Stellmer; grant BU998/2-3 to Burckhardt) and the Arbeitsgemeinschaft für Pädiatrische Stoffwechselstörungen (APS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Mühlhausen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

109_2007_174_MOESM1_ESM.doc

109_2007_174_MOESM2_ESM.doc

109_2007_174_MOESM3_ESM.doc

Supplementary online Fig. 1

Co-localization of NaDC3 and Kcc4 cotransporter. Cryosections of kidney tissue of 42 day-old Gcdh−/−mice were simultaneously incubated with antibodies against NaDC3 (brown) and Kcc4 (red). Additionally, the Kcc4 localization was visualized by immunofluorescence microscopy. Arrows and arrowheads indicate basolateral and apical membranes, respectively (JPG 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stellmer, F., Keyser, B., Burckhardt, B.C. et al. 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J Mol Med 85, 763–770 (2007). https://doi.org/10.1007/s00109-007-0174-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0174-5

Keywords

Navigation