Skip to main content

Advertisement

Log in

Targeting the epidermal growth factor receptor (HER) family by T cell receptor gene-modified T lymphocytes

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Human epidermal growth factor receptor 2 (HER2) has been successfully targeted as a breast cancer-associated antigen by various strategies. HER2 is also overexpressed in other solid tumors such as stomach cancer, as well as in hematological malignancies such as acute lymphoblastic leukemia. HER2-targeted therapies are currently under clinical investigation for a panel of malignancies. In this study, we isolated the T cell receptor (TCR) genes of a HER2-reactive allo-human leukocyte antigen-A2-restricted CTL clone and introduced the TCRα- and β-chain genes into the retrovirus vector MP71. Murinization and codon optimization of the HER2-reactive TCR was required for efficient TCR expression in primary human T cells. The tumor recognition efficiency of HER2-TCR gene-modified T cells was similar to the parental CTL clone from which the TCR genes were isolated. The known cross-reactivity of the HER2-reactive TCR with HER3 and HER4 was retained when the TCR was transduced into primary T cells. Our results could contribute to the development of a TCR-based approach for the treatment of HER2-positive breast cancer, as well as of other malignancies expressing HER2, HER3, and/or HER4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buhring HJ, Sures I, Jallal B, Weiss FU, Busch FW, Ludwig WD, Handgretinger R, Waller HD, Ullrich A (1995) The receptor tyrosine kinase p185HER2 is expressed on a subset of B-lymphoid blasts from patients with acute lymphoblastic leukemia and chronic myelogenous leukemia. Blood 86:1916–1923

    CAS  PubMed  Google Scholar 

  2. Muller MR, Grunebach F, Kayser K, Vogel W, Nencioni A, Brugger W, Kanz L, Brossart P (2003) Expression of her-2/neu on acute lymphoblastic leukemias: implications for the development of immunotherapeutic approaches. Clin Cancer Res 9:3448–3453

    PubMed  Google Scholar 

  3. Chevallier P, Robillard N, Wuilleme-Toumi S, Mechinaud F, Harousseau JL, Avet-Loiseau H (2004) Overexpression of Her2/neu is observed in one third of adult acute lymphoblastic leukemia patients and is associated with chemoresistance in these patients. Haematologica 89:1399–1401

    PubMed  Google Scholar 

  4. Chevallier P, Robillard N, Houille G, Ayari S, Guillaume T, Delaunay J, Harousseau JL, Avet-Loiseau H, Mohty M, Garand R (2009) Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody-based immunotherapy in B-ALL: a monocentric study of 44 cases. Leukemia 23:806–807

    Article  CAS  PubMed  Google Scholar 

  5. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 58:4902–4908

    CAS  PubMed  Google Scholar 

  6. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014–1018

    CAS  PubMed  Google Scholar 

  7. Disis ML, Schiffman K, Guthrie K, Salazar LG, Knutson KL, Goodell V, dela Rosa C, Cheever MA (2004) Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein-based vaccine. J Clin Oncol 22:1916–1925

    Article  CAS  PubMed  Google Scholar 

  8. Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 23:7536–7545

    Article  CAS  PubMed  Google Scholar 

  9. Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783

    Article  CAS  PubMed  Google Scholar 

  10. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nahrig J, Fend F, Weber W, Busch DH, Peschel C (2008) Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57:271–280

    Article  PubMed  Google Scholar 

  11. Conrad H, Gebhard K, Kronig H, Neudorfer J, Busch DH, Peschel C, Bernhard H (2008) CTLs directed against HER2 specifically cross-react with HER3 and HER4. J Immunol 180:8135–8145

    CAS  PubMed  Google Scholar 

  12. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109–2117

    Article  CAS  PubMed  Google Scholar 

  13. Rongcun Y, Salazar-Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Kono K, Hising C, Petersson M, Larsson O, Lan L, Appella E, Sette A, Celis E, Kiessling R (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163:1037–1044

    CAS  PubMed  Google Scholar 

  14. Schumacher TN (2002) T-cell-receptor gene therapy. Nat Rev Immunol 2:512–519

    Article  CAS  PubMed  Google Scholar 

  15. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed  Google Scholar 

  16. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed  Google Scholar 

  17. Uckert W, Schumacher TN (2009) TCR transgenes and transgene cassettes for TCR gene therapy: status in 2008. Cancer Immunol Immunother 58:809–822

    Article  CAS  PubMed  Google Scholar 

  18. Sommermeyer D, Uckert W (2010) Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 184:6223–6231

    Article  CAS  PubMed  Google Scholar 

  19. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66:8878–8886

    Article  CAS  PubMed  Google Scholar 

  20. Voss RH, Kuball J, Engel R, Guillaume P, Romero P, Huber C, Theobald M (2006) Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol Res 34:67–87

    Article  CAS  PubMed  Google Scholar 

  21. Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ, Schreurs MW, Hooijberg E (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119:135–145

    Article  CAS  PubMed  Google Scholar 

  22. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–2338

    Article  CAS  PubMed  Google Scholar 

  23. Leisegang M, Engels B, Meyerhuber P, Kieback E, Sommermeyer D, Xue SA, Reuss S, Stauss H, Uckert W (2008) Enhanced functionality of T cell receptor–redirected T cells is defined by the transgene cassette. J Mol Med 86:573–583

    Article  CAS  PubMed  Google Scholar 

  24. Engels B, Cam H, Schuler T, Indraccolo S, Gladow M, Baum C, Blankenstein T, Uckert W (2003) Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 14:1155–1168

    Article  CAS  PubMed  Google Scholar 

  25. Uckert W, Becker C, Gladow M, Klein D, Kammertoens T, Pedersen L, Blankenstein T (2000) Efficient gene transfer into primary human CD8+ T lymphocytes by MuLV-10A1 retrovirus pseudotype. Hum Gene Ther 11:1005–1014

    Article  CAS  PubMed  Google Scholar 

  26. Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732–736

    CAS  PubMed  Google Scholar 

  27. Anderson BW, Peoples GE, Murray JL, Gillogly MA, Gershenson DM, Ioannides CG (2000) Peptide priming of cytolytic activity to HER-2 epitope 369–377 in healthy individuals. Clin Cancer Res 6:4192–4200

    Google Scholar 

  28. Seliger B, Rongcun Y, Atkins D, Hammers S, Huber C, Storkel S, Kiessling R (2000) HER-2/neu is expressed in human renal cell carcinoma at heterogeneous levels independently of tumor grading and staging and can be recognized by HLA-A2.1-restricted cytotoxic T lymphocytes. Int J Cancer 87:349–359

    Article  CAS  PubMed  Google Scholar 

  29. Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A (2001) Identification of new epitopes from four different tumor–associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol 167:787–796

    CAS  PubMed  Google Scholar 

  30. Meyer zum Buschenfelde CM, Hermann C, Schmidt B, Peschel C, Bernhard H (2002) Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 62:2244–2247

    CAS  Google Scholar 

  31. Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS (2004) HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 64:4980–4986

    Article  CAS  PubMed  Google Scholar 

  32. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96:3102–3108

    CAS  PubMed  Google Scholar 

  33. Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ, Hortobagyi GN, Kudelka AP, Grabstein KH, Cheever MA, Ioannides CG (2002) Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res 8:3407–3418

    CAS  PubMed  Google Scholar 

  34. Lustgarten J, Dominguez AL, Cuadros C (2004) The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur J Immunol 34:752–761

    Article  CAS  PubMed  Google Scholar 

  35. Knutson KL, Almand B, Dang Y, Disis ML (2004) Neu antigen-negative variants can be generated after neu-specific antibody therapy in neu transgenic mice. Cancer Res 64:1146–1151

    Article  CAS  PubMed  Google Scholar 

  36. Singh R, Paterson Y (2007) Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res 67:1887–1892

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Forschungsgemeinschaft (SFB-TR36 to W.U., SFB-456 to H.B. and D.H.B., DFG BE 1579/4-1 to H.B., DFG 4/6-1 to W.U.) and from the Helmholtz Alliance Immunotherapy of Cancer (to H.B. and W.U.). We thank Kordelia Hummel, Uta Fischer, Julia Müller, and Barbara Kast for excellent technical assistance and D. Schendel for critical reading of the manuscript.

Disclosure statement

P.M. and H.C. performed research, collected and analyzed data, and wrote the manuscript; L.S. and M.L. performed research; D.B. provided vital tools; and W.U. and H.B. designed and supervised research, reviewed the data, and wrote the manuscript. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Bernhard.

Additional information

Peter Meyerhuber, Heinke Conrad, Wolfgang Uckert, and Helga Bernhard contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerhuber, P., Conrad, H., Stärck, L. et al. Targeting the epidermal growth factor receptor (HER) family by T cell receptor gene-modified T lymphocytes. J Mol Med 88, 1113–1121 (2010). https://doi.org/10.1007/s00109-010-0660-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0660-z

Keywords

Navigation