Skip to main content
Log in

The role of histone deacetylase 7 (HDAC7) in cancer cell proliferation: regulation on c-Myc

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) play fundamental roles in the epigenetic regulation of gene expression and contribute to the growth, differentiation, and apoptosis of cancer cells. Although HDACs are recognized to be closely related to cancer development and altered expression of certain HDACs is observed in tumor samples, the arcane characters of HDACs in tumorigenesis have not been fully illustrated. Herein, we report that HDAC7 is a crucial player in cancer cell proliferation. Knockdown of HDAC7 resulted in significant G1/S arrest in different cancer cell lines. Subsequent investigations indicated that HDAC7 silencing blocked cell cycle progression through suppressing c-Myc expression and increasing p21 and p27 protein levels. The ectopic expression of c-Myc in turn antagonized the cell cycle arrest and repressed the elevation of p21 and p27 in HDAC7 silencing setting. Of note, HDAC7 deficiency was further identified to induce cellular senescence program, which was also reversed by c-Myc re-expression. Further chromatin immunoprecipitation assays indicated that HDAC7 directly binds with c-Myc gene and HDAC7 silencing decreased c-Myc mRNA level via reducing histone H3/H4 acetylation and repressing the association of RNA polymerase II (RNAP II) with c-Myc gene. Taken together, our findings highlight for the first time an unrecognized link between HDAC7 and c-Myc and offer a novel mechanistic insight into the contribution of HDAC7 to tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev 1:194–202

    Article  CAS  Google Scholar 

  2. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev 6:38–51

    Article  CAS  Google Scholar 

  3. Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19:286–293

    Article  PubMed  CAS  Google Scholar 

  4. Martin M, Potente M, Janssens V, Vertommen D, Twizere JC, Rider MH, Goris J, Dimmeler S, Kettmann R, Dequiedt F (2008) Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis. Proc Natl Acad Sci USA 105:4727–4732

    Article  PubMed  CAS  Google Scholar 

  5. Mottet D, Bellahcene A, Pirotte S, Waltregny D, Deroanne C, Lamour V, Lidereau R, Castronovo V (2007) Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 101:1237–1246

    Article  PubMed  CAS  Google Scholar 

  6. Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334

    Article  PubMed  CAS  Google Scholar 

  7. Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279:41966–41974

    Article  PubMed  CAS  Google Scholar 

  8. Bakin RE, Jung MO (2004) Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J Biol Chem 279:51218–51225

    Article  PubMed  CAS  Google Scholar 

  9. Dequiedt F, Van Lint J, Lecomte E, Van Duppen V, Seufferlein T, Vandenheede JR, Wattiez R, Kettmann R (2005) Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201:793–804

    Article  PubMed  CAS  Google Scholar 

  10. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev 2:764–776

    Article  CAS  Google Scholar 

  11. Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734

    Article  PubMed  CAS  Google Scholar 

  12. Yang W, Shen J, Wu M, Arsura M, FitzGerald M, Suldan Z, Kim DW, Hofmann CS, Pianetti S, Romieu-Mourez R, Freedman LP, Sonenshein GE (2001) Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20:1688–1702

    Article  PubMed  CAS  Google Scholar 

  13. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massague J, Hanel F, Eilers M (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399

    Article  PubMed  CAS  Google Scholar 

  14. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science (New York, NY) 297:102–104

    Article  CAS  Google Scholar 

  15. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    Article  PubMed  CAS  Google Scholar 

  16. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3:565–577

    Article  PubMed  CAS  Google Scholar 

  17. Kiessling A, Sperl B, Hollis A, Eick D, Berg T (2006) Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules. Chem Biol 13:745–751

    Article  PubMed  CAS  Google Scholar 

  18. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  20. Guney I, Wu S, Sedivy JM (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci USA 103:3645–3650

    Article  PubMed  CAS  Google Scholar 

  21. Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104:13028–13033

    Article  PubMed  CAS  Google Scholar 

  22. Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E (2001) Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 276:35826–35835.

    Article  PubMed  CAS  Google Scholar 

  23. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23:1686–1690

    Article  PubMed  CAS  Google Scholar 

  24. Hooker CW, Hurlin PJ (2006) Of Myc and Mnt. J Cell Sci 119:208–216

    Article  PubMed  CAS  Google Scholar 

  25. Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL (2006) HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell 22:669–679

    Article  PubMed  CAS  Google Scholar 

  26. Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, Grausenburger R, Schweifer N, Chiocca S, Decker T, Seiser C (2006) Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 26:7913–7928

    Article  PubMed  CAS  Google Scholar 

  27. Skov S, Rieneck K, Bovin LF, Skak K, Tomra S, Michelsen BK, Odum N (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101:1430–1438

    Article  PubMed  CAS  Google Scholar 

  28. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101:1241–1246

    Article  PubMed  CAS  Google Scholar 

  29. Bernhard D, Ausserlechner MJ, Tonko M, Loffler M, Hartmann BL, Csordas A, Kofler R (1999) Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J 13:1991–2001

    PubMed  CAS  Google Scholar 

  30. Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnstone RW (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 102:3697–3702

    Article  PubMed  CAS  Google Scholar 

  31. Kao HY, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14:55–66

    PubMed  CAS  Google Scholar 

  32. Kasler HG, Verdin E (2007) Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol 27:5184–5200

    Article  PubMed  CAS  Google Scholar 

  33. Carnero A, Beach DH (2004) Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23:6006–6011

    Article  PubMed  CAS  Google Scholar 

  34. Dokmanovic M, Perez G, Xu W, Ngo L, Clarke C, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol Cancer Ther 6:2525–2534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Degui Chen (Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences) for a helpful discussion, Dr. Ka Wing Chen (State University of New York at Stony Brook) for reviewing the manuscript, Dr. Steven McMahon and Dr. Xiao-yong Zhang (Thomas Jefferson University) for providing the pBabe-puro-MycER plasmids, and Dr. Bert Vogelstein (The Johns Hopkins Medical Institutions) for providing the pBV-Luc c-Myc reporter plasmids.

Conflict of interest

None

Funding

This study was funded by the Natural Science Foundation of China for Innovation Research Group (30721005), Natural Science Foundation of China for Distinguished Young Scholars (30725046), and Knowledge Innovation Program of Chinese Academy of Sciences (KSCX2-YWR-25).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Ding or Meiyu Geng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Chen, Q., Xie, Z. et al. The role of histone deacetylase 7 (HDAC7) in cancer cell proliferation: regulation on c-Myc. J Mol Med 89, 279–289 (2011). https://doi.org/10.1007/s00109-010-0701-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0701-7

Keywords

Navigation