Skip to main content
Log in

Growth differentiation factor 15 in patients with congenital dyserythropoietic anaemia (CDA) type II

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Congenital dyserythropoietic anaemias (CDAs) are heterogeneous, hereditary disorders hallmarked by ineffective erythropoiesis and tissue iron overload. Growth differentiation factor 15 (GDF15) was suggested to mediate iron overload in iron-loading anaemias, such as the thalassaemias and CDAI by suppressing hepcidin, the key regulator of iron absorption. Here, we show that serum GDF15 concentrations are elevated in subjects with CDAI and CDAII. Despite similar disease characteristics, CDAI patients present with significantly higher GDF15 concentrations compared to CDAII patients. Hepcidin concentrations are inappropriately low in CDAII patients considering the severe hepatic iron overload associated with this disorder. GDF15 significantly correlates with the degree of anaemia (Hb), the response of erythropoiesis (reticulocyte index) as well as with iron availability in the serum (transferrin saturation). The observation that GDF15 is elevated in CDAII patients is consistent with the proposal that GDF15 is among the erythroid factors down-regulating hepcidin and contributing to iron overload in conditions of dyserythropoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wickramasinghe SN, Wood WG (2005) Advances in the understanding of the congenital dyserythropoietic anaemias. Br J Haematol 131:431–446

    Article  PubMed  CAS  Google Scholar 

  2. Dgany O, Avidan N, Delaunay J, Krasnov T, Shalmon L, Shalev H, Eidelitz-Markus T, Kapelushnik J, Cattan D, Pariente A, Tulliez M, Cretien A, Schischmanoff PO, Iolascon A, Fibach E, Koren A, Rossler J, Le Merrer M, Yaniv I, Zaizov R, Ben-Asher E, Olender T, Lancet D, Beckmann JS, Tamary H (2002) Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1. Am J Hum Genet 71:1467–1474

    Article  PubMed  CAS  Google Scholar 

  3. Iolascon A, D'Agostaro G, Perrotta S, Izzo P, Tavano R, Miraglia del Giudice B (1996) Congenital dyserythropoietic anemia type II: molecular basis and clinical aspects. Haematologica 81:543–559

    PubMed  CAS  Google Scholar 

  4. Schwarz K, Iolascon A, Verissimo F, Trede NS, Horsley W, Chen W, Paw BH, Hopfner KP, Holzmann K, Russo R, Esposito MR, Spano D, De Falco L, Heinrich K, Joggerst B, Rojewski MT, Perrotta S, Denecke J, Pannicke U, Delaunay J, Pepperkok R, Heimpel H (2009) Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Gen 41:936–940

    Article  CAS  Google Scholar 

  5. Andrews NC (2008) Forging a field: the golden age of iron biology. Blood 112:219–230

    Article  PubMed  CAS  Google Scholar 

  6. Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S (2010) Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95:501–504. doi:10.3324/haematol.2009.014399

    Article  PubMed  CAS  Google Scholar 

  7. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  8. Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang RH, Eling TE, Childs R, Ganz T, Leitman SF, Fucharoen S, Miller JL (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 13:1096–1101

    Article  PubMed  CAS  Google Scholar 

  9. Tamary H, Shalev H, Perez-Avraham G, Zoldan M, Levi I, Swinkels DW, Tanno T, Miller JL (2008) Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I. Blood 112:5241–5244

    Article  PubMed  CAS  Google Scholar 

  10. Walter PB, Harmatz P, Vichinsky E (2009) Iron metabolism and iron chelation in sickle cell disease. Acta Haematol 122:174–183

    Article  PubMed  CAS  Google Scholar 

  11. Finkenstedt A, Bianchi P, Theurl I, Vogel W, Witcher DR, Wroblewski VJ, Murphy AT, Zanella A, Zoller H (2009) Regulation of iron metabolism through GDF15 and hepcidin in pyruvate kinase deficiency. Br J Haematol 144:789–793

    Article  PubMed  CAS  Google Scholar 

  12. Heimpel H, Anselstetter V, Chrobak L, Denecke J, Einsiedler B, Gallmeier K, Griesshammer A, Marquardt T, Janka-Schaub G, Kron M, Kohne E (2003) Congenital dyserythropoietic anemia type II: epidemiology, clinical appearance, and prognosis based on long-term observation. Blood 102:4576–4581. doi:10.1182/blood-2003-02-0613

    Article  PubMed  CAS  Google Scholar 

  13. Heimpel H, Schwarz K, Ebnother M, Goede JS, Heydrich D, Kamp T, Plaumann L, Rath B, Roessler J, Schildknecht O, Schmid M, Wuillemin W, Einsiedler B, Leichtle R, Tamary H, Kohne E (2006) Congenital dyserythropoietic anemia type I (CDA I): molecular genetics, clinical appearance, and prognosis based on long-term observation. Blood 107:334–340

    Article  PubMed  CAS  Google Scholar 

  14. Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P, van Ede AE, Peters HP, van Dongen-Lases E, Wetzels JF, Sweep FC, Tjalsma H, Swinkels DW (2010) Immunochemical and mass-spectrometry-based serum hepcidin assays for iron metabolism disorders. Clin Chem 56:1570–1579. doi:10.1373/clinchem.2010.149187

    Article  PubMed  CAS  Google Scholar 

  15. Suominen P, Punnonen K, Rajamaki A, Majuri R, Hanninen V, Irjala K (1999) Automated immunoturbidimetric method for measuring serum transferrin receptor. Clin Chem 45:1302–1305

    PubMed  CAS  Google Scholar 

  16. Vernet M, Doyen C (2000) Assessment of iron status with a new fully automated assay for transferrin receptor in human serum. Clin Chem Lab Med 38:437–442. doi:10.1515/CCLM.2000.064

    Article  PubMed  CAS  Google Scholar 

  17. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803–1806

    Article  PubMed  CAS  Google Scholar 

  18. Origa R, Galanello R, Ganz T, Giagu N, Maccioni L, Faa G, Nemeth E (2007) Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica 92:583–588

    Article  PubMed  CAS  Google Scholar 

  19. Kemna EH, Kartikasari AE, van Tits LJ, Pickkers P, Tjalsma H, Swinkels DW (2008) Regulation of hepcidin: insights from biochemical analyses on human serum samples. Blood Cells Mol Dis 40:339–346. doi:10.1016/j.bcmd.2007.10.002

    Article  PubMed  CAS  Google Scholar 

  20. Flanagan JM, Peng H, Wang L, Gelbart T, Lee P, Johnson Sasu B, Beutler E (2006) Soluble transferrin receptor-1 levels in mice do not affect iron absorption. Acta Haematol 116:249–254. doi:10.1159/000095875

    Article  PubMed  CAS  Google Scholar 

  21. Lakhal S, Talbot NP, Crosby A, Stoepker C, Townsend AR, Robbins PA, Pugh CW, Ratcliffe PJ, Mole DR (2009) Regulation of growth differentiation factor 15 expression by intracellular iron. Blood 113:1555–1563

    Article  PubMed  CAS  Google Scholar 

  22. Theurl I, Finkenstedt A, Schroll A, Nairz M, Sonnweber T, Bellmann-Weiler R, Theurl M, Seifert M, Wroblewski VJ, Murphy AT, Witcher D, Zoller H, Weiss G (2010) Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia. Br J Haematol 148:449–455. doi:10.1111/j.1365-2141.2009.07961.x

    Article  PubMed  Google Scholar 

  23. Tanno T, Porayette P, Sripichai O, Noh SJ, Byrnes C, Bhupatiraju A, Lee YT, Goodnough JB, Harandi O, Ganz T, Paulson RF, Miller JL (2009) Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 114:181–186. doi:10.1182/blood-2008-12-195503

    Article  PubMed  CAS  Google Scholar 

  24. Pinto JP, Ribeiro S, Pontes H, Thowfeequ S, Tosh D, Carvalho F, Porto G (2008) Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood 111:5727–5733. doi:10.1182/blood-2007-08-106195

    Article  PubMed  CAS  Google Scholar 

  25. Mleczko-Sanecka K, Casanovas G, Ragab A, Breitkopf K, Muller A, Boutros M, Dooley S, Hentze MW, Muckenthaler MU (2010) SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression. Blood 115:2657–2665

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rosi Leichtle (Department for Internal Medicine III, University Hospital of Ulm) for the collection of patient samples, and Raeka S. Aiyar and Julien Gagneur for their useful advice during the analysis of the data. M.U.M. acknowledges funding from the E-RARE/BMBF project 01GM1005.

Conflicts of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hermann Heimpel or Martina U. Muckenthaler.

Additional information

G. Casanovas and D. W. Swinkels contributed equally to this work.

H. Heimpel and M. U. Muckenthaler contributed equally to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Soluble transferrin receptor correlations in CDAII patients. Correlations of soluble transferrin receptor with (A) ferritin, (B) the hepcidin to ferritin ratio and (C) hepcidin in CDAII patients (n = 23). Correlations are shown on a logarithmic scale, with the statistical values (ρ and P) indicated. Trend lines are based on the logarithms of the values. (JPEG 218 kb)

High-resolution image (EPS 2541 kb)

Supplementary Table 1

Serum parameters tested in healthy volunteers (1–39) and unaffected family members of CDA patients (40–48). *NA not available (PDF 65 kb)

Supplementary Table 2

Representative blood parameters tested in CDAI and CDAII patients. (*) History of splenectomy; (**) iron depletion; (***) regular transfusions. NA not available (PDF 69 kb)

Supplementary Table 3

Blood parameters tested in samples from CDAI and CDAII patients. (*) History of splenectomy; (**) receiving iron depletion; (***) regular transfusions. NA not available (PDF 73 kb)

Supplementary Table 4

Serum parameters in healthy controls, CDAI and CDAII patients. Mean values and rank (highest and lowest value) are shown. Statistical significance was calculated by a nonparametric Mann–Whitney test. * (number of men/number of women); NS not significant; † reference values are shown for controls (measurements not available). (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanovas, G., Swinkels, D.W., Altamura, S. et al. Growth differentiation factor 15 in patients with congenital dyserythropoietic anaemia (CDA) type II. J Mol Med 89, 811–816 (2011). https://doi.org/10.1007/s00109-011-0751-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0751-5

Keywords

Navigation