Skip to main content
Log in

Inhibition of endoplasmic reticulum stress by intermedin1–53 protects against myocardial injury through a PI3 kinase–Akt signaling pathway

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. We aimed to explore whether the cardioprotective effect of IMD is mediated by inhibiting myocardial endoplasmic reticulum (sarcoplasmic reticulum) stress (ERS). In vitro, IMD1–53 (10−9, 10−8, and 10−7 mol/l) directly inhibited the upregulation of ERS markers such as glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein, and caspase-12 induced by the ERS inducers tunicamycin (Tm, 10 mg/ml) or dithiothreitol (DTT, 2 mmol/l) in cardiac tissue. IMD1–53 also inhibited Tm- or DTT-induced upregulation of cleaved activating transcription factor 6 and 4. These inhibitory effects of IMD1–53 were abolished by the IMD receptor antagonist IMD17–47 (10−6 mol/l) and phosphoinositide 3-kinase inhibitor LY294002 (10 μmol/l). However, preincubation with PD98059 (20 μmol/l), an extracellular signal-regulated protein kinase inhibitor, and H89 (10 μmol/l), a protein kinase A inhibitor, could not block the ERS-inhibiting effects of IMD1–53. Furthermore, in an in vivo model of myocardium ischemia/reperfusion (I/R) in rats, administration of IMD1–53 (20 nmol/kg, intravenously) greatly attenuated ERS and ameliorated myocardium impairment induced by I/R. IMD1–53 could exert its cardioprotective effect by inhibiting myocardial ERS, which might be mediated by the phosphoinositide 3-kinase/Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    PubMed  CAS  Google Scholar 

  2. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    Article  PubMed  CAS  Google Scholar 

  3. Duan XH, Qi YF, Tang CS (2009) Endoplasmic reticulum stress and cardiovascular diseases. Geriatr Cardiol 6:49–55

    CAS  Google Scholar 

  4. Liu XH, Zhang ZY, Sun S, Wu XD (2008) Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress. Shock 30:422–427

    Article  PubMed  CAS  Google Scholar 

  5. Ma QB, Gao W, Guo YH, Zhao CY, Xue L, Tang CS (2005) Hypoxia/reoxygenation induced endoplasmic reticulum stress in cultured neonatal rat cardiomyocyte. J Peki Univ (health sciences) 37:386–388

    CAS  Google Scholar 

  6. Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, Glembotski CC (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen- regulated form of ATF6. Circ Res 98:1186–1193

    Article  PubMed  CAS  Google Scholar 

  7. Qi X, Vallentin A, Churchill E, Mochly-Rosen D (2007) deltaPKC participates in the endoplasmic reticulum stress-induced response in cultured cardiac myocytes and ischemic heart. J Mol Cell Cardiol 43:420–428

    Article  PubMed  CAS  Google Scholar 

  8. Shintani-Ishida K, Nakajima M, Uemura K, Yoshida K (2006) Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochem Biophys Res Commun 345:1600–1605

    Article  PubMed  CAS  Google Scholar 

  9. Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 279:7264–7274

    Article  PubMed  CAS  Google Scholar 

  10. Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S (2004) Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett 556:53–58

    Article  PubMed  CAS  Google Scholar 

  11. Bell D, McDermott BJ (2008) Intermedin (adrenomedullin-2): a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J Pharmacol 153:S247–S262

    Article  PubMed  CAS  Google Scholar 

  12. Grossini E, Molinari C, Mary DA, Uberti F, Caimmi PP, Vacca G (2009) Intracoronary intermedin 1–47 augments cardiac perfusion and function in anesthetized pigs: role of calcitonin receptors and {beta}-adrenoreceptor-mediated nitric oxide release. J Appl Physiol 107:1037–1050

    Article  PubMed  CAS  Google Scholar 

  13. Jolly L, March JE, Kemp PA, Bennett T, Gardiner SM (2009) Mechanisms involved in the regional haemodynamic effects of intermedin (adrenomedullin 2) compared with adrenomedullin in conscious rats. Br J Pharmacol 157:1502–1513

    Article  PubMed  CAS  Google Scholar 

  14. Yang JH, Cai Y, Duan XH, Ma CG, Wang X, Tang CS, Qi YF (2009) Intermedin 1–53 inhibits rat cardiac fibroblast activation induced by angiotensin II. Regul Pept 158:19–25

    Article  PubMed  CAS  Google Scholar 

  15. Pearson LJ, Yandle TG, Nicholls MG, Evans JJ (2009) Intermedin (adrenomedullin-2): a potential protective role in human aortic endothelial cells. Cell Physiol Biochem 23:97–108

    Article  PubMed  CAS  Google Scholar 

  16. Smith RS Jr, Gao L, Bledsoe G, Chao L, Chao J (2009) Intermedin is a new angiogenic growth factor. Am J Physiol Heart Circ Physiol 297:H1040–H1047

    Article  PubMed  CAS  Google Scholar 

  17. Bell D, Zhao Y, McCoy FP, Devine A, McDermott BJ (2008) Expression of the counter-regulatory peptide intermedin is augmented in the presence of oxidative stress in hypertrophied cardiomyocytes. Cell Physiol Biochem 21:409–420

    Article  PubMed  CAS  Google Scholar 

  18. Hagiwara M, Bledsoe G, Yang ZR, Smith RS Jr, Chao L, Chao J (2008) Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol 295:F1735–F1743

    Article  PubMed  CAS  Google Scholar 

  19. Pfeil U, Aslam M, Paddenberg R, Quanz K, Chang CL, Park JI, Gries B, Rafiq A, Faulhammer P, Goldenberg A, Papadakis T, Noll T, Hsu SY, Weissmann N, Kummer W (2009) Intermedin/adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability. Am J Physiol Lung Cell Mol Physiol 297:L837–L845

    Article  PubMed  CAS  Google Scholar 

  20. Jia YX, Yang JH, Pan CS, Geng B, Zhang J, Xiao Y, Zhao J, Gerns H, Yang J, Chang JK et al (2006) Intermedin1-53 protects the heart against isoproterenol-induced ischemic injury in rats. Eur J Pharmacol 549:117–123

    Article  PubMed  CAS  Google Scholar 

  21. Yang JH, Jia YX, Pan CS, Zhao J, Ouyang M, Yang J, Chang JK, Tang CS, Qi YF (2005) Effects of intermedin (1–53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem Biophys Res Commun 327:713–719

    Article  PubMed  CAS  Google Scholar 

  22. Song JQ, Teng X, Cai Y, Tang CS, Qi YF (2009) Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1–53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis 14:1061–1069

    Article  PubMed  CAS  Google Scholar 

  23. Zhang HY, Jiang W, Liu JY, Li Y, Chen CL, Xin HB, Huang DJ (2009) Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model. Hypertens Res 32:861–868

    Article  PubMed  CAS  Google Scholar 

  24. Webster KW, Discher DJ, Bishopric NH (1995) Cardioprotection in in vitro model of hypoxic preconditioning. J Mol Cell Cardiol 27:453–458

    Article  PubMed  CAS  Google Scholar 

  25. Teng X, Qi YF, Tang CS (2009) Endoplasmic reticulum stress and heart diseases. Sheng Li Ke Xue Jin Zhan 40:106–110

    PubMed  CAS  Google Scholar 

  26. Zhang GG, Teng X, Liu Y, Cai Y, Zhou YB, Duan XH, Song JQ, Shi Y, Tang CS, Yin XH et al (2009) Inhibition of endoplasm reticulum stress by ghrelin protects against ischemia/reperfusion injury in rat heart. Peptides 30:1109–1116

    Article  PubMed  CAS  Google Scholar 

  27. Glembotski CC (2007) Endoplasmic reticulum stress in the heart. Circ Res 101:975–984

    Article  PubMed  CAS  Google Scholar 

  28. Chauhan M, Yallampalli U, Reed L, Yallampalli C (2006) Adrenomedullin 2 antagonist infusion to rats during midgestation causes fetoplacental growth restriction through apoptosis. Biol Reprod 75:940–947

    Article  PubMed  CAS  Google Scholar 

  29. Gibbons C, Dackor R, Dunworth W, Fritz-Six K, Caron KM (2007) Receptor activity-modifying proteins: RAMPing up adrenomedullin signaling. Mol Endocrinol 21:783–796

    Article  PubMed  CAS  Google Scholar 

  30. Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420–49429

    Article  PubMed  CAS  Google Scholar 

  31. Mao W, Iwai C, Liu J, Sheu SS, Fu M, Liang CS (2008) Darbepoetin alfa exerts a cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and activation of the PI3K/Akt and STAT3 pathways. J Mol Cell Cardiol 45:250–260

    Article  PubMed  CAS  Google Scholar 

  32. Hyoda K, Hosoi T, Horie N, Okuma Y, Ozawa K, Nomura Y (2004) PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochem Biophys Res Commun 340:286–290

    Article  Google Scholar 

  33. Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E (2004) Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 279:50375–50381

    Article  PubMed  CAS  Google Scholar 

  34. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 30770869, 30871013 and 81170082 to YF Qi) and the State Major Basic Research Development Program of the People’s Republic of China (grant no. 2011CB503904 to YF Qi)

Conflicts of interest

The authors have no competing financial interests to disclose in relation to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfen Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, X., Song, J., Zhang, G. et al. Inhibition of endoplasmic reticulum stress by intermedin1–53 protects against myocardial injury through a PI3 kinase–Akt signaling pathway. J Mol Med 89, 1195–1205 (2011). https://doi.org/10.1007/s00109-011-0808-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0808-5

Keywords

Navigation