Skip to main content

Advertisement

Log in

Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is the most common lethal inherited disease in Caucasians and is caused by mutations in the CFTR gene. The disease is incurable and medical treatment is limited to the amelioration of symptoms or secondary complications. A comprehensive understanding of the disease mechanisms and the development of novel treatment options require appropriate animal models. Existing CF mouse models fail to reflect important aspects of human CF. We thus generated a CF pig model by inactivating the CFTR gene in primary porcine cells by sequential targeting using modified bacterial artificial chromosome vectors. These cells were then used to generate homozygous CFTR mutant piglets by somatic cell nuclear transfer. The homozygous CFTR mutants lack CFTR protein expression and display severe malformations in the intestine, respiratory tract, pancreas, liver, gallbladder, and male reproductive tract. These phenotypic abnormalities closely resemble both the human CF pathology as well as alterations observed in a recently published CF pig model which was generated by a different gene targeting strategy. Our new CF pig model underlines the value of the CFTR-deficient pig for gaining new insight into the disease mechanisms of CF and for the development and evaluation of new therapeutic strategies. This model will furthermore increase the availability of CF pigs to the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN et al (2011) Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 10(Suppl 2):S152–S171

    Article  PubMed  CAS  Google Scholar 

  2. Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT et al (2008) The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295:L240–L263

    Article  PubMed  CAS  Google Scholar 

  3. Grubb BR, Boucher RC (1999) Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev 79:S193–S214

    PubMed  CAS  Google Scholar 

  4. Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A et al (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(−/−) mice. Proc Natl Acad Sci USA 91:479–483

    Article  PubMed  CAS  Google Scholar 

  5. Gray MA, Winpenny JP, Porteous DJ, Dorin JR, Argent BE (1994) CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. Am J Physiol 266:C213–C221

    PubMed  CAS  Google Scholar 

  6. Norkina O, De Lisle RC (2005) Potential genetic modifiers of the cystic fibrosis intestinal inflammatory phenotype on mouse chromosomes 1, 9, and 10. BMC Genet 6:29

    Article  PubMed  Google Scholar 

  7. Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D et al (2011) The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros 10(Suppl 2):S172–S182

    Article  PubMed  CAS  Google Scholar 

  8. Sun X, Yan Z, Yi Y, Li Z, Lei D et al (2008) Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 118:1578–1583

    Article  PubMed  CAS  Google Scholar 

  9. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA et al (2008) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577

    Article  PubMed  CAS  Google Scholar 

  10. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  PubMed  CAS  Google Scholar 

  11. Sun X, Sui H, Fisher JT, Yan Z, Liu X et al (2010) Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 120:3149–3160

    Article  PubMed  CAS  Google Scholar 

  12. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA et al (2010) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182:1251–1261

    Article  PubMed  Google Scholar 

  13. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP et al (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2:29ra31

    Article  PubMed  Google Scholar 

  14. Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ (2010) Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am J Pathol 176:1377–1389

    Article  PubMed  Google Scholar 

  15. Pierucci-Alves F, Akoyev V, Stewart JC 3rd, Wang LH, Janardhan KS et al (2011) Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 85:442–451

    Article  PubMed  CAS  Google Scholar 

  16. Chang EH, Lacruz RS, Bromage TG, Bringas P Jr, Welsh MJ et al (2011) Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs 194:249–254

    Article  PubMed  CAS  Google Scholar 

  17. Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S et al (2011) Human cystic fibrosis airway epithelia have reduced Cl− conductance but not increased Na+ conductance. Proc Natl Acad Sci USA 108:10260–10265

    Article  PubMed  CAS  Google Scholar 

  18. Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M et al (2010) Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci USA 107:20571–20575

    Article  PubMed  CAS  Google Scholar 

  19. Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163

    Article  PubMed  CAS  Google Scholar 

  20. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  Google Scholar 

  21. Sauer B (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 225:890–900

    Article  PubMed  CAS  Google Scholar 

  22. Kurome M, Ueda H, Tomii R, Naruse K, Nagashima H (2006) Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Res 15:229–240

    Article  PubMed  CAS  Google Scholar 

  23. Besenfelder U, Modl J, Muller M, Brem G (1997) Endoscopic embryo collection and embryo transfer into the oviduct and the uterus of pigs. Theriogenology 47:1051–1060

    Article  PubMed  CAS  Google Scholar 

  24. Plog S, Mundhenk L, Bothe MK, Klymiuk N, Gruber AD (2010) Tissue and cellular expression patterns of porcine CFTR: similarities to and differences from human CFTR. J Histochem Cytochem 58:785–797

    Article  PubMed  CAS  Google Scholar 

  25. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  PubMed  CAS  Google Scholar 

  26. Jin DI, Lee SH, Choi JH, Lee JS, Lee JE et al (2003) Targeting efficiency of a-1,3-galactosyl transferase gene in pig fetal fibroblast cells. Exp Mol Med 35:572–577

    PubMed  CAS  Google Scholar 

  27. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  PubMed  CAS  Google Scholar 

  28. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  PubMed  CAS  Google Scholar 

  29. Vajta G, Zhang Y, Machaty Z (2007) Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod Fertil Dev 19:403–423

    Article  PubMed  Google Scholar 

  30. Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7

    Article  PubMed  CAS  Google Scholar 

  31. Salmon H, Berri M, Gerdts V, Meurens F (2009) Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol 33:384–393

    Article  PubMed  CAS  Google Scholar 

  32. Ostedgaard LS, Meyerholz DK, Vermeer DW, Karp PH, Schneider L et al (2011) Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the intestinal phenotype of CFTR−/− mice. Proc Natl Acad Sci USA 108:2921–2926

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Mukoviszidose Institut gemeinnützige Gesellschaft für Forschung und Therapieentwicklung mbH and - in part - by the Bundesministerium für Bildung und Forschung (Leading Edge Cluster Munich: m4, Personalized Medicine and Targeted Therapies). We thank Tuna Güngör, Christian Erdle, Siegfried Elsner, Jana Enders, Gabriele Hahn, Alexandra Harder, and Petra Nehrig for excellent technical support, and Lynda Ostedgaard and Michael J. Welsh for donation of the pCFTR clone.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Klymiuk or E. Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klymiuk, N., Mundhenk, L., Kraehe, K. et al. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med 90, 597–608 (2012). https://doi.org/10.1007/s00109-011-0839-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0839-y

Keywords

Navigation