Skip to main content
Log in

12/15-Lipoxygenase during the regulation of inflammation, immunity, and self-tolerance

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

12/15-Lipoxygenase (12/15-LO) catalyzes the oxidation of free and esterified fatty acids thereby generating a whole spectrum of bioactive lipid mediators. This enzyme is involved in the regulation of various homeostatic processes as well as in the pathogenesis of multiple diseases. During the innate and adaptive immune response, 12/15-LO and its products exert both pro- and anti-inflammatory effects. Likewise, this enzyme has been implicated in the pathogenesis of autoimmune disease as well as in the maintenance of self-tolerance. This review will summarize our current knowledge about the role of 12/15-LO and will try to examine the two faces of this enzyme within the context of inflammation and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2(7):612–619

    CAS  PubMed  Google Scholar 

  2. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    CAS  PubMed  Google Scholar 

  3. Stables MJ, Gilroy DW (2011) Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 50(1):35–51

    CAS  PubMed  Google Scholar 

  4. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274(34):23679–23682

    CAS  PubMed  Google Scholar 

  5. Thomas CP, O'Donnell VB (2012) Oxidized phospholipid signaling in immune cells. Curr Opin Pharmacol 12:471–477

    CAS  PubMed  Google Scholar 

  6. Kuhn H, Thiele BJ (1999) The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett 449(1):7–11

    CAS  PubMed  Google Scholar 

  7. Funk CD, Chen XS, Johnson EN, Zhao L (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312

    PubMed  Google Scholar 

  8. Kuhn H, O'Donnell VB (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 45(4):334–356

    PubMed  Google Scholar 

  9. Noguchi N, Yamashita H, Hamahara J, Nakamura A, Kuhn H, Niki E (2002) The specificity of lipoxygenase-catalyzed lipid peroxidation and the effects of radical-scavenging antioxidants. Biol Chem 383(3–4):619–626

    CAS  PubMed  Google Scholar 

  10. Sultana C, Shen Y, Rattan V, Kalra VK (1996) Lipoxygenase metabolites induced expression of adhesion molecules and transendothelial migration of monocyte-like HL-60 cells is linked to protein kinase C activation. J Cell Physiol 167(3):477–487

    CAS  PubMed  Google Scholar 

  11. Natarajan R, Reddy MA, Malik KU, Fatima S, Khan BV (2001) Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21(9):1408–1413

    CAS  PubMed  Google Scholar 

  12. Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R (2002) The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem 277(12):9920–9928

    CAS  PubMed  Google Scholar 

  13. Natarajan R, Lanting L, Xu L, Nadler J (1994) Role of specific isoforms of protein kinase C in angiotensin II and lipoxygenase action in rat adrenal glomerulosa cells. Mol Cell Endocrinol 101(1–2):59–66

    CAS  PubMed  Google Scholar 

  14. Rao GN, Baas AS, Glasgow WC, Eling TE, Runge MS, Alexander RW (1994) Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J Biol Chem 269(51):32586–32591

    CAS  PubMed  Google Scholar 

  15. Hsi LC, Wilson LC, Eling TE (2002) Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma. J Biol Chem 277(43):40549–40556

    CAS  PubMed  Google Scholar 

  16. Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK, Hsu A, Zhou S, Maddipati KR, Liu J et al (2011) Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 286(39):33832–33840

    CAS  PubMed  Google Scholar 

  17. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400(6742):378–382

    CAS  PubMed  Google Scholar 

  18. Shappell SB, Gupta RA, Manning S, Whitehead R, Boeglin WE, Schneider C, Case T, Price J, Jack GS, Wheeler TM et al (2001) 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res 61(2):497–503

    CAS  PubMed  Google Scholar 

  19. Shankaranarayanan P, Nigam S (2003) IL-4 induces apoptosis in A549 lung adenocarcinoma cells: evidence for the pivotal role of 15-hydroxyeicosatetraenoic acid binding to activated peroxisome proliferator-activated receptor gamma transcription factor. J Immunol 170(2):887–894

    CAS  PubMed  Google Scholar 

  20. Yang XY, Wang LH, Mihalic K, Xiao W, Chen T, Li P, Wahl LM, Farrar WL (2002) Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor gamma activated by macrophage-derived 12/15-lipoxygenase ligands. J Biol Chem 277(6):3973–3978

    CAS  PubMed  Google Scholar 

  21. Straus DS, Glass CK (2007) Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 28(12):551–558

    CAS  PubMed  Google Scholar 

  22. Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10(5):365–376

    CAS  PubMed  Google Scholar 

  23. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361

    CAS  PubMed  Google Scholar 

  24. Yamamoto S, Ueda N, Yokoyama C, Fitzsimmons BJ, Rokach J, Oates JA, Brash AR (1988) Lipoxin syntheses by arachidonate 12- and 5-lipoxygenases purified from porcine leukocytes. Adv Exp Med Biol 229:15–26

    CAS  PubMed  Google Scholar 

  25. Chiang N, Serhan CN, Dahlen SE, Drazen JM, Hay DW, Rovati GE, Shimizu T, Yokomizo T, Brink C (2006) The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 58(3):463–487

    CAS  PubMed  Google Scholar 

  26. Jozsef L, Zouki C, Petasis NA, Serhan CN, Filep JG (2002) Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci USA 99(20):13266–13271

    CAS  PubMed  Google Scholar 

  27. Machado FS, Johndrow JE, Esper L, Dias A, Bafica A, Serhan CN, Aliberti J (2006) Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 12(3):330–334

    CAS  PubMed  Google Scholar 

  28. Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L (2008) Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 22(10):3595–3606

    CAS  PubMed  Google Scholar 

  29. Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177(4):1576–1591

    CAS  PubMed  Google Scholar 

  30. Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2(10):787–795

    CAS  PubMed  Google Scholar 

  31. Hammond VJ, O'Donnell VB (2012) Esterified eicosanoids: generation, characterization and function. Biochim Biophys Acta 1818:2403–2412

    CAS  PubMed  Google Scholar 

  32. Morgan AH, Dioszeghy V, Maskrey BH, Thomas CP, Clark SR, Mathie SA, Lloyd CM, Kuhn H, Topley N, Coles BC et al (2009) Phosphatidylethanolamine-esterified eicosanoids in the mouse: tissue localization and inflammation-dependent formation in Th-2 disease. J Biol Chem 284(32):21185–21191

    CAS  PubMed  Google Scholar 

  33. Maskrey BH, Bermudez-Fajardo A, Morgan AH, Stewart-Jones E, Dioszeghy V, Taylor GW, Baker PR, Coles B, Coffey MJ, Kuhn H et al (2007) Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. J Biol Chem 282(28):20151–20163

    CAS  PubMed  Google Scholar 

  34. Hutchins PM, Murphy RC (2012) Cholesteryl ester acyl oxidation and remodeling in murine macrophages: formation of oxidized phosphatidylcholine. J Lipid Res 53(8):1588–1597

    CAS  PubMed  Google Scholar 

  35. Harkewicz R, Hartvigsen K, Almazan F, Dennis EA, Witztum JL, Miller YI (2008) Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein. J Biol Chem 283(16):10241–10251

    CAS  PubMed  Google Scholar 

  36. Choi SH, Harkewicz R, Lee JH, Boullier A, Almazan F, Li AC, Witztum JL, Bae YS, Miller YI (2009) Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 104(12):1355–1363

    CAS  PubMed  Google Scholar 

  37. Nadel JA, Ueki IF, Schuster A, Conrad DJ, Sigal E (1990) Arachidonate 15-lipoxygenase: immunocytochemical localization in blood and airway cells. Trans Assoc Am Physicians 103:145–153

    CAS  PubMed  Google Scholar 

  38. MacMillan DK, Hill E, Sala A, Sigal E, Shuman T, Henson PM, Murphy RC (1994) Eosinophil 15-lipoxygenase is a leukotriene A4 synthase. J Biol Chem 269(43):26663–26668

    CAS  PubMed  Google Scholar 

  39. Brinckmann R, Topp MS, Zalan I, Heydeck D, Ludwig P, Kuhn H, Berdel WE, Habenicht JR (1996) Regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin-4. Biochem J 318(Pt 1):305–312

    CAS  PubMed  Google Scholar 

  40. Huo Y, Zhao L, Hyman MC, Shashkin P, Harry BL, Burcin T, Forlow SB, Stark MA, Smith DF, Clarke S et al (2004) Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation 110(14):2024–2031

    CAS  PubMed  Google Scholar 

  41. Dobrian AD, Lieb DC, Ma Q, Lindsay JW, Cole BK, Ma K, Chakrabarti SK, Kuhn NS, Wohlgemuth SD, Fontana M et al (2010) Differential expression and localization of 12/15 lipoxygenases in adipose tissue in human obese subjects. Biochem Biophys Res Commun 403(3–4):485–490

    CAS  PubMed  Google Scholar 

  42. Sun D, Funk CD (1996) Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J Biol Chem 271(39):24055–24062

    CAS  PubMed  Google Scholar 

  43. Uderhardt S, Herrmann M, Oskolkova OV, Aschermann S, Bicker W, Ipseiz N, Sarter K, Frey B, Rothe T, Voll R et al (2012) 12/15-Lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36(5):834–846

    CAS  PubMed  Google Scholar 

  44. Conrad DJ, Kuhn H, Mulkins M, Highland E, Sigal E (1992) Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci USA 89(1):217–221

    CAS  PubMed  Google Scholar 

  45. Heydeck D, Thomas L, Schnurr K, Trebus F, Thierfelder WE, Ihle JN, Kuhn H (1998) Interleukin-4 and -13 induce upregulation of the murine macrophage 12/15-lipoxygenase activity: evidence for the involvement of transcription factor STAT6. Blood 92(7):2503–2510

    CAS  PubMed  Google Scholar 

  46. Chaitidis P, O'Donnell V, Kuban RJ, Bermudez-Fajardo A, Ungethuem U, Kuhn H (2005) Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13. Cytokine 30(6):366–377

    CAS  PubMed  Google Scholar 

  47. Roy B, Bhattacharjee A, Xu B, Ford D, Maizel AL, Cathcart MK (2002) IL-13 signal transduction in human monocytes: phosphorylation of receptor components, association with Jaks, and phosphorylation/activation of Stats. J Leukoc Biol 72(3):580–589

    CAS  PubMed  Google Scholar 

  48. Roy B, Cathcart MK (1998) Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J Biol Chem 273(48):32023–32029

    CAS  PubMed  Google Scholar 

  49. Xu B, Bhattacharjee A, Roy B, Feldman GM, Cathcart MK (2004) Role of protein kinase C isoforms in the regulation of interleukin-13-induced 15-lipoxygenase gene expression in human monocytes. J Biol Chem 279(16):15954–15960

    CAS  PubMed  Google Scholar 

  50. Xu B, Bhattacharjee A, Roy B, Xu HM, Anthony D, Frank DA, Feldman GM, Cathcart MK (2003) Interleukin-13 induction of 15-lipoxygenase gene expression requires p38 mitogen-activated protein kinase-mediated serine 727 phosphorylation of Stat1 and Stat3. Mol Cell Biol 23(11):3918–3928

    CAS  PubMed  Google Scholar 

  51. Spanbroek R, Hildner M, Kohler A, Muller A, Zintl F, Kuhn H, Radmark O, Samuelsson B, Habenicht AJ (2001) IL-4 determines eicosanoid formation in dendritic cells by down-regulation of 5-lipoxygenase and up-regulation of 15-lipoxygenase 1 expression. Proc Natl Acad Sci USA 98(9):5152–5157

    CAS  PubMed  Google Scholar 

  52. Maddox JF, Serhan CN (1996) Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J Exp Med 183(1):137–146

    CAS  PubMed  Google Scholar 

  53. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164(4):1663–1667

    CAS  PubMed  Google Scholar 

  54. Chan MM, Moore AR (2010) Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J Immunol 184(11):6418–6426

    CAS  PubMed  Google Scholar 

  55. Stables MJ, Shah S, Camon EB, Lovering RC, Newson J, Bystrom J, Farrow S, Gilroy DW (2011) Transcriptomic analyses of murine resolution-phase macrophages. Blood 118(26):e192–e208

    CAS  PubMed  Google Scholar 

  56. Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A (2011) Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol 41(2):366–379

    CAS  PubMed  Google Scholar 

  57. Gronert K, Maheshwari N, Khan N, Hassan IR, Dunn M, Laniado Schwartzman M (2005) A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J Biol Chem 280(15):15267–15278

    CAS  PubMed  Google Scholar 

  58. Kronke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, Schabbauer G, Zarbock A, Koenders MI, Axmann R, Zwerina J et al (2009) 12/15-Lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol 183(5):3383–3389

    PubMed  Google Scholar 

  59. Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, Behbehani B, Colgan SP, Stahl GL, Merched A, Petasis NA et al (2003) Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol 171(12):6856–6865

    CAS  PubMed  Google Scholar 

  60. Munger KA, Montero A, Fukunaga M, Uda S, Yura T, Imai E, Kaneda Y, Valdivielso JM, Badr KF (1999) Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proc Natl Acad Sci USA 96(23):13375–13380

    CAS  PubMed  Google Scholar 

  61. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D'Acquisto F, Buckingham JC, Perretti M, Flower RJ (2010) Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol 184(5):2611–2619

    CAS  PubMed  Google Scholar 

  62. Dioszeghy V, Rosas M, Maskrey BH, Colmont C, Topley N, Chaitidis P, Kuhn H, Jones SA, Taylor PR, O'Donnell VB (2008) 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. J Immunol 181(9):6514–6524

    CAS  PubMed  Google Scholar 

  63. Middleton MK, Rubinstein T, Pure E (2006) Cellular and molecular mechanisms of the selective regulation of IL-12 production by 12/15-lipoxygenase. J Immunol 176(1):265–274

    CAS  PubMed  Google Scholar 

  64. Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN, Brash AR, Marnett LJ (2002) 15-Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 277(26):23278–23286

    CAS  PubMed  Google Scholar 

  65. Cimen I, Astarci E, Banerjee S (2011) 15-Lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma. J Cell Biochem 112(9):2490–2501

    CAS  PubMed  Google Scholar 

  66. Paintlia AS, Paintlia MK, Singh I, Singh AK (2006) IL-4-induced peroxisome proliferator-activated receptor gamma activation inhibits NF-kappaB trans activation in central nervous system (CNS) glial cells and protects oligodendrocyte progenitors under neuroinflammatory disease conditions: implication for CNS-demyelinating diseases. J Immunol 176(7):4385–4398

    CAS  PubMed  Google Scholar 

  67. Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stockl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12(8):1009–1059

    CAS  PubMed  Google Scholar 

  68. Kronke G, Bochkov VN, Huber J, Gruber F, Bluml S, Furnkranz A, Kadl A, Binder BR, Leitinger N (2003) Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J Biol Chem 278(51):51006–51014

    PubMed  Google Scholar 

  69. Leitinger N, Tyner TR, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih PT, Mackman N, Tigyi G, Territo MC et al (1999) Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci USA 96(21):12010–12015

    CAS  PubMed  Google Scholar 

  70. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W et al (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107(6):737–746

    CAS  PubMed  Google Scholar 

  71. Bochkov VN, Leitinger N (2003) Anti-inflammatory properties of lipid oxidation products. J Mol Med (Berl) 81(10):613–626

    CAS  Google Scholar 

  72. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419(6902):77–81

    CAS  PubMed  Google Scholar 

  73. von Schlieffen E, Oskolkova OV, Schabbauer G, Gruber F, Bluml S, Genest M, Kadl A, Marsik C, Knapp S, Chow J et al (2009) Multi-hit inhibition of circulating and cell-associated components of the toll-like receptor 4 pathway by oxidized phospholipids. Arterioscler Thromb Vasc Biol 29(3):356–362

    Google Scholar 

  74. Bluml S, Kirchberger S, Bochkov VN, Kronke G, Stuhlmeier K, Majdic O, Zlabinger GJ, Knapp W, Binder BR, Stockl J et al (2005) Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. J Immunol 175(1):501–508

    PubMed  Google Scholar 

  75. Bluml S, Zupkovitz G, Kirchberger S, Seyerl M, Bochkov VN, Stuhlmeier K, Majdic O, Zlabinger GJ, Seiser C, Stockl J (2009) Epigenetic regulation of dendritic cell differentiation and function by oxidized phospholipids. Blood 114(27):5481–5489

    PubMed  Google Scholar 

  76. Reilly KB, Srinivasan S, Hatley ME, Patricia MK, Lannigan J, Bolick DT, Vandenhoff G, Pei H, Natarajan R, Nadler JL et al (2004) 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. J Biol Chem 279(10):9440–9450

    CAS  PubMed  Google Scholar 

  77. Hatley ME, Srinivasan S, Reilly KB, Bolick DT, Hedrick CC (2003) Increased production of 12/15 lipoxygenase eicosanoids accelerates monocyte/endothelial interactions in diabetic db/db mice. J Biol Chem 278(28):25369–25375

    CAS  PubMed  Google Scholar 

  78. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6(12):1191–1197

    CAS  PubMed  Google Scholar 

  79. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439

    CAS  PubMed  Google Scholar 

  80. Kronke G, Reich N, Scholtysek C, Akhmetshina A, Uderhardt S, Zerr P, Palumbo K, Lang V, Dees C, Distler O et al (2012) The 12/15-lipoxygenase pathway counteracts fibroblast activation and experimental fibrosis. Ann Rheum Dis 71(6):1081–1087

    PubMed  Google Scholar 

  81. Aliberti J, Hieny S, Reise Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 3(1):76–82

    CAS  PubMed  Google Scholar 

  82. Faveeuw C, Fougeray S, Angeli V, Fontaine J, Chinetti G, Gosset P, Delerive P, Maliszewski C, Capron M, Staels B et al (2000) Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-12 production in murine dendritic cells. FEBS Lett 486(3):261–266

    CAS  PubMed  Google Scholar 

  83. Gosset P, Charbonnier AS, Delerive P, Fontaine J, Staels B, Pestel J, Tonnel AB, Trottein F (2001) Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 31(10):2857–2865

    CAS  PubMed  Google Scholar 

  84. Nencioni A, Grunebach F, Zobywlaski A, Denzlinger C, Brugger W, Brossart P (2002) Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. J Immunol 169(3):1228–1235

    CAS  PubMed  Google Scholar 

  85. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759

    CAS  PubMed  Google Scholar 

  86. Kihara Y, Matsushita T, Kita Y, Uematsu S, Akira S, Kira J, Ishii S, Shimizu T (2009) Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci USA 106(51):21807–21812

    CAS  PubMed  Google Scholar 

  87. Emerson MR, LeVine SM (2004) Experimental allergic encephalomyelitis is exacerbated in mice deficient for 12/15-lipoxygenase or 5-lipoxygenase. Brain Res 1021(1):140–145

    CAS  PubMed  Google Scholar 

  88. Natarajan C, Muthian G, Barak Y, Evans RM, Bright JJ (2003) Peroxisome proliferator-activated receptor-gamma-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 171(11):5743–5750

    PubMed  Google Scholar 

  89. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3(2):59–70

    CAS  PubMed  Google Scholar 

  90. Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289

    PubMed  Google Scholar 

  91. Miller YI, Chang MK, Funk CD, Feramisco JR, Witztum JL (2001) 12/15-Lipoxygenase translocation enhances site-specific actin polymerization in macrophages phagocytosing apoptotic cells. J Biol Chem 276(22):19431–19439

    CAS  PubMed  Google Scholar 

  92. Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL (2011) Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 50(1):115–131

    CAS  PubMed  Google Scholar 

  93. Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya J, Yokoyama M et al (2009) Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206(7):1565–1574

    CAS  PubMed  Google Scholar 

  94. Anning PB, Coles B, Bermudez-Fajardo A, Martin PE, Levison BS, Hazen SL, Funk CD, Kuhn H, O'Donnell VB (2005) Elevated endothelial nitric oxide bioactivity and resistance to angiotensin-dependent hypertension in 12/15-lipoxygenase knockout mice. Am J Pathol 166(3):653–662

    CAS  PubMed  Google Scholar 

  95. Klein RF, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos AS, Shea M, Waters RV, Belknap JK, Peltz G et al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303(5655):229–232

    CAS  PubMed  Google Scholar 

  96. Middleton MK, Zukas AM, Rubinstein T, Jacob M, Zhu P, Zhao L, Blair I, Pure E (2006) Identification of 12/15-lipoxygenase as a suppressor of myeloproliferative disease. J Exp Med 203(11):2529–2540

    CAS  PubMed  Google Scholar 

  97. Andersson CK, Claesson HE, Rydell-Tormanen K, Swedmark S, Hallgren A, Erjefalt JS (2008) Mice lacking 12/15-lipoxygenase have attenuated airway allergic inflammation and remodeling. Am J Respir Cell Mol Biol 39(6):648–656

    CAS  PubMed  Google Scholar 

  98. Taylor PR, Heydeck D, Jones GW, Kronke G, Funk CD, Knapper S, Adams D, Kuhn H, O'Donnell VB (2012) Development of myeloproliferative disease in 12/15-lipoxygenase deficiency. Blood 119(25):6173–6174

    CAS  PubMed  Google Scholar 

  99. Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39(9):2538–2543

    CAS  PubMed  Google Scholar 

  100. Pallast S, Arai K, Pekcec A, Yigitkanli K, Yu Z, Wang X, Lo EH, van Leyen K (2010) Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15-lipoxygenase-dependent organelle damage pathway. J Cereb Blood Flow Metab 30(6):1157–1167

    CAS  PubMed  Google Scholar 

  101. Pallast S, Arai K, Wang X, Lo EH, van Leyen K (2009) 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J Neurochem 111(3):882–889

    CAS  PubMed  Google Scholar 

  102. Funk CD, Cyrus T (2001) 12/15-Lipoxygenase, oxidative modification of LDL and atherogenesis. Trends Cardiovasc Med 11(3–4):116–124

    CAS  PubMed  Google Scholar 

  103. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    CAS  PubMed  Google Scholar 

  104. Cyrus T, Pratico D, Zhao L, Witztum JL, Rader DJ, Rokach J, FitzGerald GA, Funk CD (2001) Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation 103(18):2277–2282

    CAS  PubMed  Google Scholar 

  105. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103(11):1597–1604

    CAS  PubMed  Google Scholar 

  106. Rong S, Cao Q, Liu M, Seo J, Jia L, Boudyguina E, Gebre AK, Colvin PL, Smith TL, Murphy RC et al (2012) Macrophage 12/15 lipoxygenase expression increases plasma and hepatic lipid levels and exacerbates atherosclerosis. J Lipid Res 53(4):686–695

    CAS  PubMed  Google Scholar 

  107. Bolick DT, Srinivasan S, Whetzel A, Fuller LC, Hedrick CC (2006) 12/15 Lipoxygenase mediates monocyte adhesion to aortic endothelium in apolipoprotein E-deficient mice through activation of RhoA and NF-kappaB. Arterioscler Thromb Vasc Biol 26(6):1260–1266

    CAS  PubMed  Google Scholar 

  108. Bolick DT, Orr AW, Whetzel A, Srinivasan S, Hatley ME, Schwartz MA, Hedrick CC (2005) 12/15-Lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 25(11):2301–2307

    CAS  PubMed  Google Scholar 

  109. Taylor AM, Hanchett R, Natarajan R, Hedrick CC, Forrest S, Nadler JL, McNamara CA (2005) The effects of leukocyte-type 12/15-lipoxygenase on Id3-mediated vascular smooth muscle cell growth. Arterioscler Thromb Vasc Biol 25(10):2069–2074

    CAS  PubMed  Google Scholar 

  110. Shen J, Herderick E, Cornhill JF, Zsigmond E, Kim HS, Kuhn H, Guevara NV, Chan L (1996) Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest 98(10):2201–2208

    CAS  PubMed  Google Scholar 

  111. Merched AJ, Serhan CN, Chan L (2011) Nutrigenetic disruption of inflammation-resolution homeostasis and atherogenesis. J Nutrigenet Nutrigenomics 4(1):12–24

    CAS  PubMed  Google Scholar 

  112. Zarbock A, Distasi MR, Smith E, Sanders JM, Kronke G, Harry BL, von Vietinghoff S, Buscher K, Nadler JL, Ley K (2009) Improved survival and reduced vascular permeability by eliminating or blocking 12/15-lipoxygenase in mouse models of acute lung injury (ALI). J Immunol 183(7):4715–4722

    CAS  PubMed  Google Scholar 

  113. McDuffie M, Maybee NA, Keller SR, Stevens BK, Garmey JC, Morris MA, Kropf E, Rival C, Ma K, Carter JD et al (2008) Nonobese diabetic (NOD) mice congenic for a targeted deletion of 12/15-lipoxygenase are protected from autoimmune diabetes. Diabetes 57(1):199–208

    CAS  PubMed  Google Scholar 

  114. Bleich D, Chen S, Zipser B, Sun D, Funk CD, Nadler JL (1999) Resistance to type 1 diabetes induction in 12-lipoxygenase knockout mice. J Clin Invest 103(10):1431–1436

    CAS  PubMed  Google Scholar 

  115. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, Miller YI (2009) 12/15-Lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 4(9):e7250

    PubMed  Google Scholar 

  116. Nunemaker CS, Chen M, Pei H, Kimble SD, Keller SR, Carter JD, Yang Z, Smith KM, Wu R, Bevard MH et al (2008) 12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet. Am J Physiol Endocrinol Metab 295(5):E1065–E1075

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Krönke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uderhardt, S., Krönke, G. 12/15-Lipoxygenase during the regulation of inflammation, immunity, and self-tolerance. J Mol Med 90, 1247–1256 (2012). https://doi.org/10.1007/s00109-012-0954-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0954-4

Keywords

Navigation