Skip to main content

Advertisement

Log in

Autophagy in autoimmune disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. This process of cellular self-digestion is an essential stress response and is cytoprotective by removing damaged organelles and proteins that threaten the cell’s survival. Key outcomes include energy generation and recycling of metabolic precursors. In the immune system, autophagy regulates processes such as antigen uptake and presentation, removal of pathogens, survival of short- and long-lived immune cells, and cytokine-dependent inflammation. In all cases, a window of optimal autophagic activity appears critical to balance catabolic, reparative, and inflammation-inducing processes. Dysregulation of autophagosome formation and autophagic flux can have deleterious consequences, ranging from a failure to “clean house” to the induction of autophagy-induced cell death. Abnormalities in the autophagic pathway have been implicated in numerous autoimmune diseases. Genome-wide association studies have linked polymorphisms in autophagy-related genes with predisposition for tissue-destructive inflammatory disease, specifically in inflammatory bowel disease and systemic lupus erythematosus. Although the precise mechanisms by which dysfunctional autophagy renders the host susceptible to continuous inflammation remain unclear, autophagy’s role in regulating the long-term survival of adaptive immune cells has recently surfaced as a defect in multiple sclerosis and rheumatoid arthritis. Efforts are underway to identify autophagy-inducing and autophagy-suppressing pharmacologic interventions that can be added to immunosuppressive therapy to improve outcomes of patients with autoimmune disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  CAS  PubMed  Google Scholar 

  2. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  CAS  PubMed  Google Scholar 

  7. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  8. Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774

    Article  CAS  PubMed  Google Scholar 

  9. Hamasaki M, Shibutani ST, Yoshimori T (2013) Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 25:455–460

    Article  CAS  PubMed  Google Scholar 

  10. Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141:625–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:407–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Deter RL, De Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33:437–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11

    Article  PubMed Central  PubMed  Google Scholar 

  15. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210:2119–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yang Z, Matteson EL, Goronzy JJ, Weyand CM (2015) T-cell metabolism in autoimmune disease. Arthritis Res Ther 17:29

    Article  PubMed Central  PubMed  Google Scholar 

  18. Yang Z, Goronzy JJ, Weyand CM (2014) The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10:382–383

    Article  CAS  PubMed  Google Scholar 

  19. Simon A (2014) Cholesterol metabolism and immunity. N Engl J Med 371:1933–1935

    Article  PubMed  Google Scholar 

  20. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596

    Article  CAS  PubMed  Google Scholar 

  21. Munz C (2009) Enhancing immunity through autophagy. Annu Rev Immunol 27:423–449

    Article  CAS  PubMed  Google Scholar 

  22. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H et al (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102:7922–7927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wang X, Gao Y, Tan J, Devadas K, Ragupathy V, Takeda K, Zhao J, Hewlett I (2012) HIV-1 and HIV-2 infections induce autophagy in Jurkat and CD4+ T cells. Cell Signal 24:1414–1419

    Article  CAS  PubMed  Google Scholar 

  26. Pua HH, Guo J, Komatsu M, He YW (2009) Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 182:4046–4055

    Article  CAS  PubMed  Google Scholar 

  27. Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186:5313–5322

    Article  CAS  PubMed  Google Scholar 

  28. Xu X, Araki K, Li S, Han JH, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL et al (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15:1152–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. International Consortium for Systemic Lupus Erythematosus G, Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210

    Article  Google Scholar 

  30. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, Xu JH, Cai ZM, Huang W, Zhao GP et al (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–1237

    Article  CAS  PubMed  Google Scholar 

  31. Zhou XJ, Zhang H (2012) Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 8:1286–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhou XJ, Lu XL, Lv JC, Yang HZ, Qin LX, Zhao MH, Su Y, Li ZG, Zhang H (2011) Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann Rheum Dis 70:1330–1337

    Article  CAS  PubMed  Google Scholar 

  33. Ramos PS, Criswell LA, Moser KL, Comeau ME, Williams AH, Pajewski NM, Chung SA, Graham RR, Zidovetzki R, Kelly JA et al (2011) A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. PLoS Genet 7:e1002406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhou XJ, Lu XL, Nath SK, Lv JC, Zhu SN, Yang HZ, Qin LX, Zhao MH, Su Y, Shen N et al (2012) Gene-gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in systemic lupus erythematosus. Arthritis Rheum 64:222–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    Article  CAS  PubMed  Google Scholar 

  36. Rogers NJ, Lees MJ, Gabriel L, Maniati E, Rose SJ, Potter PK, Morley BJ (2009) A defect in Marco expression contributes to systemic lupus erythematosus development via failure to clear apoptotic cells. J Immunol 182:1982–1990

    Article  CAS  PubMed  Google Scholar 

  37. Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199:1631–1640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S, Wagner H, Schmid RM, Bauer S, Krug A (2006) U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107:3229–3234

    Article  CAS  PubMed  Google Scholar 

  39. Lichtman EI, Helfgott SM, Kriegel MA (2012) Emerging therapies for systemic lupus erythematosus—focus on targeting interferon-alpha. Clin Immunol 143:210–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–1401

    Article  CAS  PubMed  Google Scholar 

  41. Clarke AJ, Ellinghaus U, Cortini A, Stranks A, Simon AK, Botto M, Vyse TJ (2014) Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis

  42. Gros F, Arnold J, Page N, Decossas M, Korganow AS, Martin T, Muller S (2012) Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 8:1113–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nambiar MP, Juang YT, Krishnan S, Tsokos GC (2004) Dissecting the molecular mechanisms of TCR zeta chain downregulation and T cell signaling abnormalities in human systemic lupus erythematosus. Int Rev Immunol 23:245–263

    Article  CAS  PubMed  Google Scholar 

  44. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA (2010) Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69:20–28

    Article  CAS  PubMed  Google Scholar 

  45. Perl A (2009) Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjogren’s syndrome. Curr Opin Rheumatol 21:443–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Page N, Gros F, Schall N, Decossas M, Bagnard D, Briand JP, Muller S (2011) HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann Rheum Dis 70:837–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Scharl M, Wojtal KA, Becker HM, Fischbeck A, Frei P, Arikkat J, Pesch T, Kellermeier S, Boone DL, Weber A et al (2012) Protein tyrosine phosphatase nonreceptor type 2 regulates autophagosome formation in human intestinal cells. Inflamm Bowel Dis 18:1287–1302

    Article  PubMed  Google Scholar 

  48. Lees CW, Barrett JC, Parkes M, Satsangi J (2011) New IBD genetics: common pathways with other diseases. Gut 60:1739–1753

    Article  CAS  PubMed  Google Scholar 

  49. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  PubMed  Google Scholar 

  50. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Henckaerts L, Cleynen I, Brinar M, John JM, Van Steen K, Rutgeerts P, Vermeire S (2011) Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm Bowel Dis 17:1392–1397

    Article  PubMed  Google Scholar 

  52. Alirezaei M, Fox HS, Flynn CT, Moore CS, Hebb AL, Frausto RF, Bhan V, Kiosses WB, Whitton JL, Robertson GS et al (2009) Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 5:152–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, Roodman DG, Windle JJ, Zhang X, Lu B (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19:144–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Bhattacharya A, Parillon X, Zeng S, Han S, Eissa NT (2014) Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J Biol Chem 289:26525–26532

    Article  CAS  PubMed  Google Scholar 

  55. Weyand CM, Yang Z, Goronzy JJ (2014) T-cell aging in rheumatoid arthritis. Curr Opin Rheumatol 26:93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fujii H, Shao L, Colmegna I, Goronzy JJ, Weyand CM (2009) Telomerase insufficiency in rheumatoid arthritis. Proc Natl Acad Sci U S A 106:4360–4365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schmidt D, Goronzy JJ, Weyand CM (1996) CD4+ CD7– CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97:2027–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Goronzy JJ, Li G, Yang Z, Weyand CM (2013) The janus head of T cell aging—autoimmunity and immunodeficiency. Front Immunol 4:131

    Article  PubMed Central  PubMed  Google Scholar 

  59. Ireland JM, Unanue ER (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 208:2625–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01 AR042547, R01 AI044142, HL 117913, R01 AI108906, and P01 HL058000 to CMW and R01 AI108891, R01 AG045779, and I01 BX001669 to JJG). ZY received fellowship support from the Govenar Discovery Fund.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Weyand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Goronzy, J.J. & Weyand, C.M. Autophagy in autoimmune disease. J Mol Med 93, 707–717 (2015). https://doi.org/10.1007/s00109-015-1297-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1297-8

Keywords

Navigation