Skip to main content
Log in

Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Multiple primary tumors (MPT) have been described in carriers of inherited cancer predisposition genes. However, the genetic etiology of a large proportion of MPT cases remains unclear. We reviewed 267 patients with hereditary cancer predisposition syndromes (HCPS) that underwent genetic counseling and selected 22 patients with MPT to perform genomic analysis (CytoScan HD Array, Affymetrix) aiming to identify new alterations related to a high risk of developing MPT. Twenty patients had a positive family history of cancer and 11 met phenotypic criteria for HCPS. Genetic testing for each of the genes associated with these syndromes revealed negative results for pathogenic mutations. Seventeen rare germline copy number variations (CNVs) covering 40 genes were identified in 11 patients, including an EPCAM/MSH2 deletion in one Lynch syndrome patient. An enrichment analysis revealed a significant number of genes (where the CNVs are mapped) associated with carcinogenesis and/or related to functions implicated with tumor development, such as proliferation and cell survival. An interaction network analysis highlighted the importance of TP53 pathway in cancer emergence. A high number of germline copy-neutral loss of heterozygosity (cnLOH) was identified in nine cases, particularly in two patients. Eighteen genes were covered by both rare CNVs and cnLOH, including 14 related to tumorigenesis and seven genes (ABCC1, KDM4C, KIAA0430, MYH11, NDE1, PIWIL2, and ULK2) specifically associated with cellular growth and proliferation. Overall, we identified 14 cases with rare CNVs and/or cnLOH that may contribute to the risk of MPT development.

Key message

  • CNVs may explain the risk of hereditary cancer syndromes in MPT patients.

  • CNVs affecting genes related to cancer are candidates to be involved in MPT risk.

  • EPCAM/MSH2 deletions should be investigated in patients suspected to have LS.

  • Gene enrichment related to the TP53 network is associated with MPT development.

  • cnLOH and CNVs contribute to the risk of MPT development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cybulski C, Nazarali S, Narod AS (2014) Multiple primary cancers as a guide to heritability. Int J Cancer 135:1756–1763

    Article  CAS  PubMed  Google Scholar 

  2. Utada M, Ohno Y, Hori M, Soda M (2014) Incidence of multiple primary cancers and interval between first and second primary cancers. Cancer Sci 105:890–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weir HK, Johnson CJ, Ward KC, Coleman MP (2016) The effect of multiple primary rules on cancer incidence rates and trends. Cancer Causes Control 7:377–390

    Article  Google Scholar 

  4. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics. CA Cancer J Clin 64:252–271

    Article  PubMed  Google Scholar 

  5. Banks KC, Moline JJ, Marvin ML, Newlin AC, Vogel KJ (2013) 10 rare tumors that warrant a genetics referral. Familial Cancer 12:1–18

    Article  PubMed  Google Scholar 

  6. McBride KA, Ballinger ML, Killick E, Kirk K, Tattersall MH, Eeles RA, Thimas DM, Mitchell G (2014) Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 11:260–271

    Article  CAS  PubMed  Google Scholar 

  7. Carneiro da Silva F, Ferreira JR, Torrezan GT, Figueiredo MC, Santos EM, Nakagawa WT, Brianese RC, Petrolini de Oliveira L, Begnani MD, Aguiar-Junior S et al (2015) Clinical and molecular characterization of Brazilian patients suspected to have Lynch syndrome. PLoS One 10:e0139753

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kast K, Rhiem K, Wappenschmidt B, Hahnen E, Hauke J, Bluemcke B, Zarghooni V, Herold N, Ditsch N, Kiechle M et al (2016) Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 53:465–471

    Article  PubMed  Google Scholar 

  9. Krepischi AC, Pearson PL, Rosenberg C (2012) Germline copy number variations and cancer predisposition. Future Oncol 8:441–450

    Article  CAS  PubMed  Google Scholar 

  10. Pylkäs K, Vuorela M, Otsukka M, Kallioniemi A, Jukkola-Vuorinen A, Winqvist R (2012) Rare copy number variants observed in hereditary breast cancer cases disrupt genes in estrogen signaling and TP53 tumor suppression network. PLoS Genet 8:e1002734

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aury-Landas J, Bougeard G, Castel H, Hernandez-Vargas H, Drouet A, Latouche JB, Schouft MT, Férec C, Leroux D, Lasset C et al (2013) Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours. Eur J Hum Genet 21:1369–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villacis RA, Miranda PM, Gomy I, Santos EM, Carraro DM, Achatz MI, Rossi BM, Rogatto SR (2016) Contribution of rare germline copy number variations and common susceptibility loci in Lynch syndrome patients negative for mutations in the mismatch repair genes. Int J Cancer 138:1928–1935

    Article  CAS  PubMed  Google Scholar 

  13. O’Keefe C, McDevitt MA, Maciejewski JP (2010) Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood 115:2731–2739

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schlegelberger B, Kreipe H, Lehmann U, Steinemann D, Ripperger T, Göhring G, Thomay K, Rump A, Di Donato N, Suttorp M (2015) A child with Li-Fraumeni syndrome: modes to inactivate the second allele of TP53 in three different malignancies. Pediatr Blood Cancer 62:1481–1484

    Article  PubMed  Google Scholar 

  15. Middeldorp A, van Eijk R, Oosting J, Forte GI, van Puijenbroek M, van Nieuwenhuizen M, Corver WE, Ruano D, Caldes T, Wijnen J et al (2012) Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas. Int J Cancer 130:837–846

    Article  CAS  PubMed  Google Scholar 

  16. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, Gauthier-Villars M, Stoppa-Lyonnet D, Consolino E, Brugières L et al (2015) Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33:2345–2352

    Article  CAS  PubMed  Google Scholar 

  17. NCCN - National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology Genetic/familial high-risk assessment: BRCA-Related Breast and/or Ovarian Cancer Syndrome (BRCA-1) Version 1.2017. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed in October 2016.

  18. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology 116:1453–1456

    Article  CAS  PubMed  Google Scholar 

  19. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leachman SA, Carucci J, Kohlmann W, Banks KC, Asgari MM, Bergman W, Bianchi-Scarrà G, Brentnall T, Bressac-de Paillerets B, Bruno W et al. (2009) Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol 61:677.e1–14

  21. Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR, Krepischi AC, Olivieri EH, Cunha IW, Tabori U et al (2014) Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun 5:4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, Devani B, Il T, Jurisica I (2009) NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25:3327–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shukla S, Patric IR, Patil V, Shwetha SD, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Somasundaram K (2014) Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth. J Biol Chem 289:22306–22318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohelnikova-Duchonova B, Brynychova V, Oliverius M, Honsova E, Kala Z, Muckova K, Soucek P (2013) Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas 42:707–716

    Article  CAS  PubMed  Google Scholar 

  25. Kamikubo Y, Hyde RK, Zhao L, Alemu L, Rivas C, Garrett LJ, Liu PP (2013) The C-terminus of CBFβ-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis. Blood 121:638–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van der Reijden BA, Massop M, Simons A, de Witte T, Breuning M, Jansen JH (2010) The NDE1 gene is disrupted by the inv(16) in 90% of cases with CBFB-MYH11-positive acute myeloid leukemia. Leukemia 24:857–859

    Article  CAS  PubMed  Google Scholar 

  27. Ye FG, Song CG, Cao ZG, Xia C, Chen DN, Chen L, Li S, Qiao F, Ling H, Yao L et al (2015) Cytidine deaminase axis modulated by miR-484 differentially regulates cell proliferation and chemoresistance in breast cancer. Cancer Res 75:1504–1515

    Article  CAS  PubMed  Google Scholar 

  28. Ziv E, Dean E, Hu D, Martino A, Serie D, Curtin K, Campa D, Aftab B, Bracci P, Buda G et al (2015) Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat Commun 6:7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee CC, Jan HJ, Lai JH, Ma HI, Hueng DY, Lee YC, Cheng YY, Liu LW, Wei HW, Lee HM (2010) Nodal promotes growth and invasion in human gliomas. Oncogene 29:3110–3123

    Article  CAS  PubMed  Google Scholar 

  30. Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L et al (2013) TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 15:818–828

    Article  CAS  PubMed  Google Scholar 

  31. Lee JH, Jung C, Javadian-Elyaderani P, Schweyer S, Schütte D, Shoukier M, Karimi-Busheri F, Weinfeld M, Rasouli-Nia A, Hengstler JG et al (2010) Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Cancer Res 70:4569–4579

    Article  CAS  PubMed  Google Scholar 

  32. Hornstein M, Hoffmann MJ, Alexa A, Yamanaka M, Müller M, Jung V, Rahnenführer J, Schulz WA (2008) Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics 5:123–136

    CAS  PubMed  Google Scholar 

  33. Zhang L, Liu X, Zhang X, Chen R (2016) Identification of important long non-coding RNAs and highly recurrent aberrant alternative splicing events in hepatocellular carcinoma through integrative analysis of multiple RNA-Seq datasets. Mol Gen Genomics 291:1035–1051

    Article  CAS  Google Scholar 

  34. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, Song G, Easton J, Harvey RC, Wheeler DA et al (2015) Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukemia. Nat Commun 6:6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berry WL, Janknecht R (2013) KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73:2936–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whitworth J, Hoffman J, Chapman C, Ong KR, Lalloo F, Evans DG, Maher ER (2015) A clinical and genetic analysis of multiple primary cancer referrals to genetics services. Eur J Hum Genet 23:581–587

    Article  CAS  PubMed  Google Scholar 

  37. Saam J, Moyes K, Landon M, Williams K, Kaldate RR, Arnell C, Wenstrup R (2015) Hereditary cancer-associated mutations in women diagnosed with two primary cancers: an opportunity to identify hereditary cancer syndromes after the first cancer diagnosis. Oncology 88:226–233

    Article  PubMed  Google Scholar 

  38. Mason-Suares H, Kim W, Grimmett L, Williams ES, Horner VL, Kunig D, Goldlust IS, Wu BL, Shen Y, Miller DT (2013) Density matters: comparison of array platforms for detection of copy-number variation and copy-neutral abnormalities. Genet Med 15:706–712

    Article  CAS  PubMed  Google Scholar 

  39. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455

    Article  CAS  PubMed  Google Scholar 

  40. Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M (2016) Role of non-coding sequence variants in cancer. Nat Rev Genet 17:93–108

    Article  CAS  PubMed  Google Scholar 

  41. Villacis RA, Abreu FB, Miranda PM, Domingues MA, Carraro DM, Santos EM, Andrade VP, Rossi BM, Achatz MI, Rogatto SR (2016) ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients. Tumour Biol 37:3145–3153

    Article  CAS  PubMed  Google Scholar 

  42. Kuusisto KM, Akinrinade O, Vihinen M, Kankuri-Tammilehto M, Laasanen SL, Schleutker J (2013) Copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer. PLoS One 8:e71802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, Tan IL, Turcan S, Veeriah S, Meng S et al (2014) Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet 46:588–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nordgard SH, Johansen FE, Alnaes GI, Bucher E, Syvänen AC, Naume B, Børresen-Dale AL, Kristensen VN (2008) Genome-wide analysis identifies 16q deletion associated with survival, molecular subtypes, mRNA expression, and germline haplotypes in breast cancer patients. Genes Chromosomes Cancer 47:680–696

    Article  CAS  PubMed  Google Scholar 

  45. Romero A, Garre P, Valentin O, Sanz J, Pérez-Segura P, Llovet P, Diaz-Rubio E, de la Hoya M, Caldés T (2013) Frequency and variability of genomic rearrangements on MSH2 in Spanish Lynch syndrome families. PLoS One 8:e72195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tutlewska K, Lubinski J, Kurzawski G (2013) Germline deletions in the EPCAM gene as a cause of Lycnh syndrome—literature review. Hered Cancer Clin Pract 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kryh H, Carén H, Erichsen J, Sjöberg RM, Abrahamsson J, Kogner P, Martinsson T (2011) Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors. BMC Genomics 12:443

    Article  PubMed  PubMed Central  Google Scholar 

  48. Torabi K, Miró R, Fernández-Jiménez N, Quintanilla I, Ramos L, Prat E, del Rey J, Pujol N, Killian JK, Meltzer OS et al (2015) Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer. Carcinogenesis 36:1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kearney HM, Kearney JB, Conlin LK (2011) Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: consanguinity, uniparental disomy, and recessive single-gene mutations. Clin Lab Med 31:595–613

    Article  PubMed  Google Scholar 

  50. Awwad SW, Ayoub N (2015) Overexpression of KDM4 lysine demethylases disrupts the integrity of the DNA mismatch repair pathway. Biol Open 4:498–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients who accepted to participate in this study. Samples were provided by the A.C. Camargo Cancer Center Biobank, São Paulo, Brazil. We are grateful to the Oncogenetics Department of the A.C. Camargo Cancer Center for its contributions. This study was supported by grants from the Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo Research Foundation (FAPESP 2013/23277-8) and the National Institute of Science and Technology in Oncogenomics (INCITO - FAPESP 2008/57887-9, and National Council for Scientific and Technological Development (CNPq 573589/08-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia R. Rogatto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Rolando A. R. Villacis and Tatiane R. Basso contributed equally to this study.

Electronic supplementary material

ESM 1

(PDF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villacis, R.A.R., Basso, T.R., Canto, L.M. et al. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J Mol Med 95, 523–533 (2017). https://doi.org/10.1007/s00109-017-1507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1507-7

Keywords

Navigation