Skip to main content

Advertisement

Log in

A 15-amino acid C-terminal peptide of beta-defensin-3 inhibits bone resorption by inhibiting the osteoclast differentiation and disrupting podosome belt formation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Human beta-defensin-3 (HBD3), which is secreted from cells in the skin, salivary gland, and bone marrow, exhibits antimicrobial and immunomodulatory activities. Its C-terminal end contains a 15-amino acid polypeptide (HBD3-C15) that is known to effectively elicit antimicrobial activity. Recently, certain antimicrobial peptides are known to inhibit osteoclast differentiation and, thus, we investigated whether HBD3-C15 hinders osteoclast differentiation and bone destruction to assess its potential use as an anti-bone resorption agent. HBD3-C15 inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation and formation of resorption pits. In addition, HBD3-C15 disrupted the formation of RANKL-induced podosome belt which is a feature typically found in mature osteoclasts with bone-resorbing capacity. HBD3-C15 downregulated cortactin, cofilin, and vinculin, which are involved in the podosome belt formation. Furthermore, bone loss induced by RANKL was significantly reduced in a mouse calvarial implantation model that was treated with HBD3-C15. Similar inhibitory effects were observed on the osteoclast differentiation and podosome belt formation induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide (AaLPS). Concordantly, HBD3-C15 attenuated the resorption in the calvarial bone of AaLPS-implanted mouse. Collectively, these results suggest that HBD3-C15 has an anti-bone resorption effect in developing osteoclasts and that this occurs via its disruption of podosome belt formation. HBD3-C15 could be a potential therapeutic agent for the inhibition of bone destruction.

Key messages

  • HBD3-C15 inhibits osteoclast differentiation and bone resorption capacity.

  • HBD3-C15 disrupts the podosome belt formation in osteoclasts.

  • HBD3-C15 alleviates the bone loss by RANKL or A. actinomycetemcomitans LPS in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38

    Article  CAS  Google Scholar 

  2. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  3. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  4. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lange AW, Yutzey KE (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol 292:407–417

    Article  CAS  PubMed  Google Scholar 

  6. Kim K, Lee SH, Ha Kim J, Choi Y, Kim N (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol 22:176–185

    Article  CAS  PubMed  Google Scholar 

  7. Saltel F, Chabadel A, Bonnelye E, Jurdic P (2008) Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol 87:459–468

    Article  CAS  PubMed  Google Scholar 

  8. Georgess D, Machuca-Gayet I, Blangy A, Jurdic P (2014) Podosome organization drives osteoclast-mediated bone resorption. Cell Adhes Migr 8:191–204

    Article  Google Scholar 

  9. Destaing O, Saltel F, Geminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi SW, Yeon JT, Ryu BJ, Kim KJ, Moon SH, Lee H, Lee MS, Lee SY, Heo JC, Park SJ et al (2015) Repositioning potential of PAK4 to osteoclastic bone resorption. J Bone Miner Res 30:1494–1507

    Article  CAS  PubMed  Google Scholar 

  11. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  12. Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758:1499–1512

    Article  CAS  PubMed  Google Scholar 

  13. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  CAS  PubMed  Google Scholar 

  14. Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, PB MC Jr, Tack BF, Vogel HJ (2002) The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277:8279–8289

    Article  CAS  PubMed  Google Scholar 

  15. Lin P, Li Y, Dong K, Li Q (2015) The antibacterial effects of an antimicrobial peptide human beta-defensin 3 fused with carbohydrate-binding domain on Pseudomonas aeruginosa PA14. Curr Microbiol 71:170–176

    Article  CAS  PubMed  Google Scholar 

  16. Rozek A, Powers JP, Friedrich CL, Hancock RE (2003) Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42:14130–14138

    Article  CAS  PubMed  Google Scholar 

  17. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JK, Chang SW, Perinpanayagam H, Lim SM, Park YJ, Han SH, Baek SH, Zhu Q, Bae KS, Kum KY (2013) Antibacterial efficacy of a human beta-defensin-3 peptide on multispecies biofilms. J Endod 39:1625–1629

    Article  PubMed  Google Scholar 

  19. Lim SM, Ahn KB, Kim C, Kum JW, Perinpanayagam H, Gu Y, Yoo YJ, Chang SW, Han SH, Shon WJ et al (2016) Antifungal effects of synthetic human beta-defensin 3-C15 peptide. Restor Dent Endod 41:91–97

    Article  PubMed  PubMed Central  Google Scholar 

  20. Horibe K, Nakamichi Y, Uehara S, Nakamura M, Koide M, Kobayashi Y, Takahashi N, Udagawa N (2013) Roles of cathelicidin-related antimicrobial peptide in murine osteoclastogenesis. Immunology 140:344–351

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Supanchart C, Thawanaphong S, Makeudom A, Bolscher JG, Nazmi K, Kornak U, Krisanaprakornkit S (2012) The antimicrobial peptide, LL-37, inhibits in vitro osteoclastogenesis. J Dent Res 91:1071–1077

    Article  CAS  PubMed  Google Scholar 

  22. Park OJ, Cho MK, Yun CH, Han SH (2015) Lipopolysaccharide of Aggregatibacter actinomycetemcomitans induces the expression of chemokines MCP-1, MIP-1alpha, and IP-10 via similar but distinct signaling pathways in murine macrophages. Immunobiology 220:1067–1074

    Article  CAS  PubMed  Google Scholar 

  23. Kim J, Yang J, Park OJ, Kang SS, Kim WS, Kurokawa K, Yun CH, Kim HH, Lee BL, Han SH (2013) Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J Bone Miner Res 28:2381–2391

    Article  CAS  PubMed  Google Scholar 

  24. Yoon H, Yoon YS, Kim MS, Chung MJ, Yum DY (2014) A probiotic preparation duolac-gold ameliorates dextran sulphate sodium-induced mouse colitis by downregulating the expression of IL-6. Toxicol Res 30:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob Agents Chemother 47:2804–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gil-Henn H, Destaing O, Sims NA, Aoki K, Alles N, Neff L, Sanjay A, Bruzzaniti A, De Camilli P, Baron R et al (2007) Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. J Cell Biol 178:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuller K, Ross JL, Szewczyk KA, Moss R, Chambers TJ (2010) Bone is not essential for osteoclast activation. PLoS One 5:e12837

    Article  PubMed  PubMed Central  Google Scholar 

  28. Prakasam A, Elavarasu SS, Natarajan RK (2012) Antibiotics in the management of aggressive periodontitis. J Pharm Bioallied Sci 4:S252–S255

    Article  PubMed  PubMed Central  Google Scholar 

  29. Madeira MF, Queiroz-Junior CM, Cisalpino D, Werneck SM, Kikuchi H, Fujise O, Ryffel B, Silva TA, Teixeira MM, Souza DG (2013) MyD88 is essential for alveolar bone loss induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide in mice. Mol Oral Microbiol 28:415–424

    Article  CAS  PubMed  Google Scholar 

  30. Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376–385

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto T, Nagase Y, Hirose J, Tokuyama N, Yasui T, Kadono Y, Ueki K, Kadowaki T, Nakamura K, Tanaka S (2013) Regulation of bone resorption and sealing zone formation in osteoclasts occurs through protein kinase B-mediated microtubule stabilization. J Bone Miner Res 28:1191–1202

    Article  CAS  PubMed  Google Scholar 

  32. Vives V, Cres G, Richard C, Busson M, Ferrandez Y, Planson AG, Zeghouf M, Cherfils J, Malaval L, Blangy A (2015) Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation. Nat Commun 6:6218

    Article  CAS  PubMed  Google Scholar 

  33. Ray BJ, Thomas K, Huang CS, Gutknecht MF, Botchwey EA, Bouton AH (2012) Regulation of osteoclast structure and function by FAK family kinases. J Leukoc Biol 92:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tehrani S, Faccio R, Chandrasekar I, Ross FP, Cooper JA (2006) Cortactin has an essential and specific role in osteoclast actin assembly. Mol Biol Cell 17:2882–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zalli D, Neff L, Nagano K, Shin NY, Witke W, Gori F, Baron R (2016) The actin-binding protein cofilin and its interaction with cortactin are required for podosome patterning in osteoclasts and bone resorption in vivo and in vitro. J Bone Miner Res 31:1701–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukunaga T, Zou W, Warren JT, Teitelbaum SL (2014) Vinculin regulates osteoclast function. J Biol Chem 289:13554–13564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Warnke PH, Springer IN, Russo PA, Wiltfang J, Essig H, Kosmahl M, Sherry E, Acil Y (2006) Innate immunity in human bone. Bone 38:400–408

    Article  CAS  PubMed  Google Scholar 

  38. Varoga D, Wruck CJ, Tohidnezhad M, Brandenburg L, Paulsen F, Mentlein R, Seekamp A, Besch L, Pufe T (2009) Osteoblasts participate in the innate immunity of the bone by producing human beta defensin-3. Histochem Cell Biol 131:207–218

    Article  CAS  PubMed  Google Scholar 

  39. Liu GD, Yu HJ, Ou S, Luo X, Ni WD, Huang XK, Chen JY, Wang Y, Javard P, Fei J (2014) Human beta-defensin-3 for the diagnosis of periprosthetic joint infection and loosening. Orthopedics 37:e384–e390

    Article  PubMed  Google Scholar 

  40. Paulsen F, Pufe T, Conradi L, Varoga D, Tsokos M, Papendieck J, Petersen W (2002) Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol 198:369–377

    Article  CAS  PubMed  Google Scholar 

  41. Tohidnezhad M, Varoga D, Podschun R, Wruck CJ, Seekamp A, Brandenburg LO, Pufe T, Lippross S (2011) Thrombocytes are effectors of the innate immune system releasing human beta defensin-3. Injury 42:682–686

    Article  PubMed  Google Scholar 

  42. Varoga D, Pufe T, Mentlein R, Kohrs S, Grohmann S, Tillmann B, Hassenpflug J, Paulsen F (2005) Expression and regulation of antimicrobial peptides in articular joints. Ann Anat 187:499–508

    Article  CAS  PubMed  Google Scholar 

  43. Varoga D, Pufe T, Harder J, Schroder JM, Mentlein R, Meyer-Hoffert U, Goldring MB, Tillmann B, Hassenpflug J, Paulsen F (2005) Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis and Rheum 52:1736–1745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea, which is funded by the Korean government (NRF-2015R1A2A1A15055453, NRF-2015M2A2A6A01044894, and NRF-2015R1D1A1A09056592), and by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare (HI14C0469 and HI17C1377), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

S.H.H. conceived the idea. S.H.H. and O.-J.P. designed the experiments. O.-J.P., J.K., J.Y.L., Y.-J. P., K.-Y.K., K.B.A., and S.H.H. performed the experiments and/or interpreted the data. C.-H.Y. provided the critical comments. All authors contributed to the discussion of the results, followed by writing and reviewing the manuscript.

Corresponding author

Correspondence to Seung Hyun Han.

Ethics declarations

Animal experiments were approved by the Institutional Animal Care and Use Committee of Seoul National University.

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, OJ., Kim, J., Ahn, K.B. et al. A 15-amino acid C-terminal peptide of beta-defensin-3 inhibits bone resorption by inhibiting the osteoclast differentiation and disrupting podosome belt formation. J Mol Med 95, 1315–1325 (2017). https://doi.org/10.1007/s00109-017-1589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1589-2

Keywords

Navigation