Skip to main content

Advertisement

Log in

Autophagy blockade sensitizes human head and neck squamous cell carcinoma towards CYT997 through enhancing excessively high reactive oxygen species-induced apoptosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The functional relationship between apoptosis and autophagy in anticancer drug treatment is extremely complex, and the molecular machinery is obscure. This study aims to investigate the efficacy of CYT997, a novel microtubule-disrupting agent, in head and neck squamous cell carcinomas (HNSCCs) and complete the autophagy-apoptosis puzzle involved in drug action. We report here that CYT997 exhibits anticancer activity by triggering oxidative stress-associated apoptosis in HNSCC cells. Interestingly, upregulation of autophagy by mTOR-dependent pathways appears to have a cytoprotective role in preventing apoptosis by inhibiting CYT997-induced excessively high levels of reactive oxygen species (ROS). Blockade of autophagy by ATG7 depletion or addition of autophagy inhibitor hydroxychloroquine (HCQ) sensitizes HNSCC cells to CYT997 as evidenced by enhanced ROS-associated apoptosis. Moreover, HCQ exhibits a good synergism with CYT997 on induction of apoptosis in HNSCC xenografts without cytotoxicity, suggesting combined treatment of CYT997 with autophagy inhibitors would increase the anticancer efficacy of CYT997. These findings unveil the importance of ROS in crosstalk between autophagy and apoptosis in CYT997 treatment, raising concerns that genetic or pharmacologic blockade of autophagy should be considered in the design of new therapeutics for HNSCC.

Key messages

• CYT997 exhibits anticancer activity by induction of ROS-associated apoptosis.

• mTOR-dependent cytoprotective autophagy prevents CYT997-induced apoptosis.

• Blockade of autophagy augments CYT997 efficacy by enhanced ROS-associated apoptosis.

• Combination of autophagy inhibitors with CYT997 is more effective against HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3-MA:

3-methyladenine

CV:

cyclic voltammetry

DCFH-DA:

2′, 7′-dichlorodihydrofluorescein diacetate

HNSCC:

head and neck squamous cell carcinomas

HCQ:

hydroxychloroquine

IACUC:

Institutional Animal Care and Use Committee

IHC:

immunohistochemistry

JEOL:

JEM 1230 transmission electron microscope

NAC:

N-acetylcysteine

NaCAC:

sodium cacodylate

MVD:

microvessel density

O2 •− :

superoxide

p70S6K:

p70 ribosomal S6 kinase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TEM:

transmission electron microscopy

References

  1. Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8:244–250

    Article  PubMed  CAS  Google Scholar 

  2. Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13:275–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Thomas E, Gopalakrishnan V, Hegde M, Kumar S, Karki SS, Raghavan SC, Choudhary B (2016) A novel resveratrol based tubulin inhibitor induces mitotic arrest and activates apoptosis in Cancer cells. Sci Rep 6:34653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Phillips GDL, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, Lambert JM, Chari RV, Lutz RJ (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  CAS  Google Scholar 

  6. Sahra IB, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70:2465–2475

    Article  PubMed  CAS  Google Scholar 

  7. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T, Gronau S (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44:823–829

    Article  PubMed  CAS  Google Scholar 

  8. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25:2677–2681

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burns CJ, Harte MF, Bu X, Fantino E, Joffe M, Sikanyika H, Su S, Tranberg CE, Wilson N, Charman SA (2009) Discovery of CYT997: a structurally novel orally active microtubule targeting agent. Bioorg Med Chem Lett 19:4639–4642

    Article  PubMed  CAS  Google Scholar 

  10. Burns CJ, Fantino E, Phillips ID, Su S, Harte MF, Bukczynska PE, Frazzetto M, Joffe M, Kruszelnicki I, Wang B (2009) CYT997: a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity in vitro and in vivo. Mol Cancer Ther 8:3036–3045

    Article  PubMed  CAS  Google Scholar 

  11. Chen X, Yang C, Xu Y, Zhou H, Liu H, Qian W (2013) The microtubule depolymerizing agent CYT997 effectively kills acute myeloid leukemia cells via activation of caspases and inhibition of PI3K/Akt/mTOR pathway proteins. Exp Ther Med 6:299–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ji Y-T, Liu Y-N, Liu Z-P (2015) Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr Med Chem 22:1348–1360

    Article  PubMed  CAS  Google Scholar 

  13. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  14. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333:1157–1160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22

    Article  PubMed  CAS  Google Scholar 

  16. Davis JE, Xie X, Guo J, Huang W, Chu W-M, Huang S, Teng Y, Wu G (2016) ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget 7:39834–39845

    Article  PubMed  PubMed Central  Google Scholar 

  17. Teng Y, Ren X, Li H, Shull A, Kim J, Cowell JK (2015) Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein. Oncogene

  18. Davis JE, Xie X, Guo J, Huang W, Chu W-M, Huang S, Teng Y, Wu G (2016). ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget 5

  19. Ramanathan B, Jan K-Y, Chen C-H, Hour T-C, Yu H-J, Pu Y-S (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65:8455–8460

    Article  PubMed  CAS  Google Scholar 

  20. Gao L, Wang X, Tang Y, Huang S, C-AA H, Teng Y (2017) FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res 36:8–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gao L, Teng Y (2016) Exploiting plug-and-play electrochemistry for drug discovery. Future Med Chem 8:567–577

    Article  PubMed  CAS  Google Scholar 

  22. Misu H, Takayama H, Saito Y, Mita Y, Kikuchi A, K-a I, Chikamoto K, Kanamori T, Tajima N, Lan F (2017) Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med 23:508–516

    Article  PubMed  CAS  Google Scholar 

  23. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz AK, Lin Z, Balliet RM, Howell A (2010) Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role (s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Cancer Biol Ther 10:537–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    Article  PubMed  CAS  Google Scholar 

  25. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ding J, Li T, Wang X, Zhao E, Choi J-H, Yang L, Zha Y, Dong Z, Huang S, Asara JM (2013) The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab 18:896–907

    Article  PubMed  CAS  Google Scholar 

  27. Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  Google Scholar 

  28. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin–dependent translation initiation in breast cancer cells. Cancer Res 67:10804–10812

    Article  PubMed  CAS  Google Scholar 

  29. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S-i, Natsume T, Takehana K, Yamada N (2009) Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tremblay F, Marette A (2001) Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway a negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 276:38052–38060

    PubMed  CAS  Google Scholar 

  31. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Seiliez I, Belghit I, Gao Y, Skiba-Cassy S, Dias K, Cluzeaud M, Rémond D, Hafnaoui N, Salin B, Camougrand N, Panserat S (2016) Looking at the metabolic consequences of the colchicine-based in vivo autophagic flux assay. Autophagy 12:343–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vakifahmetoglu-Norberg H, Xia H-G, Yuan J (2015) Pharmacologic agents targeting autophagy. J Clin Invest 125:5–13

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 85:10850–10861

    Article  CAS  Google Scholar 

  35. Teng Y, Cai Y, Pi W, Gao L, Shay C (2017) Augmentation of the anticancer activity of CYT997 in human prostate cancer by inhibiting Src activity. J Hematol Oncol 10:118

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao L, Jauregui CE, Teng Y (2017) Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med Chem 9:335–345

    Article  PubMed  CAS  Google Scholar 

  37. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8:831–838

    Article  PubMed  PubMed Central  Google Scholar 

  38. Owino S, Sánchez-Bretaño A, Tchio C, Cecon E, Karamitri A, Dam J, Jockers R, Piccione G, Noh HL, Kim T (2018) Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res 64:e12462

    Article  CAS  Google Scholar 

  39. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Ann Rev Pathol 8:105–137

    Article  CAS  Google Scholar 

  40. Kania E, Pająk B, Orzechowski A (2015) Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int 2015:352794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17:12–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Guo X, Li D, Hu F, Song J, Zhang S, Deng W, Sun K, Zhao Q, Xie X, Song Y (2012) Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett 320:171–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Dental College of Georgia Special Funding Initiative and a grant from the Department of Defense (W81XWH-14-1-0412) (to Y.T.). We would like to thank the staff of the Electron Microscopy and Histology Core at Augusta University for assistance with EM data collection.

Funding

This work was supported in part by Dental College of Georgia Special Funding Initiative and a grant from the Department of Defense (W81XWH-14-1-0412) (to Y.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Teng.

Ethics declarations

The study was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Augusta.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhao, X., Lang, L. et al. Autophagy blockade sensitizes human head and neck squamous cell carcinoma towards CYT997 through enhancing excessively high reactive oxygen species-induced apoptosis. J Mol Med 96, 929–938 (2018). https://doi.org/10.1007/s00109-018-1670-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1670-5

Keywords

Navigation