Skip to main content
Log in

Modernes Implantatdesign für Osteosynthesen bei vorbestehender Osteoporose

Modern implant design for the osteosynthesis of osteoporotic bone fractures

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Der durch Osteoporose hervorgerufene Knochenverlust vermindert die Knochenstabilität und erhöht das Risiko für das primäre Auftreten von Frakturen. Ist die osteoporotische Fraktur aufgetreten, stellt die mechanische Schwächung der Knochensubstanz eine signifikante Herausforderung für die adäquate Frakturversorgung dar. Ziel der Versorgung von Frakturen bei vorbestehender Osteoporose ist die Herstellung einer sofort voll belastungsstabilen Osteosynthese. Entscheidend für die effektive Frakturbehandlung ist dabei zunächst und zuvorderst die konsequente Einhaltung der wesentlichen Prinzipien der stabilen Osteosynthese: Reposition, Kompression, langstreckige Abstützung, flächige Abstützung, daneben additive Techniken wie Winkelstabilität und Augmentation. Moderne Osteosyntheseimplantate unterstützen die Anwendung dieser Prinzipien. Designmodifikationen und technische Änderungen am Implantat bzw. der Osteosynthesetechnik versetzen den Operateur in die Lage, die wesentlichen Behandlungsprinzipien auch beim mechanisch geschwächten Knochen anzuwenden und untereinander zu kombinieren. Als wesentliche Aspekte bei den modernen Implantaten sind integrierte Kompressionstechniken, multidirektionale Winkelstabilität, Ausweitung der Abstützfläche und vielseitige Augmentationsmöglichkeiten zu nennen. Trotz moderner Implantattechnologie bleibt die osteoporotische Fraktur eine Herausforderung für den Operateur, dem eine erfolgreiche Behandlung nur bei sorgfältigster Durchführung und konsequenter Einhaltung der Grundprinzipien gelingen wird.

Abstract

Osteoporosis is characterized by a reduction of bone mass and changes in bone micro-architecture. The resulting reduction in bone strength leads to the well recognized increase in the risk of fracture, particularly at the radius, hip, and spine. The treatment of osteoporotic fractures is challenged by the reduced mechanical capacity of osteoporotic bone, reflected in reduced holding power and increased fragility. The aim of successful fracture treatment in individuals with osteoporosis is early fixation of the fracture with immediate and almost unrestricted weight-bearing capacity. The key factor for effective fracture treatment is strict adherence to the basic principles of stable fracture fixation: reposition, compression, long, wide supports, as well as additive techniques such as angular stability and bone augmentation. Modern osteosynthesis implants effectively support the application of these principles. Modifications in implant design and techniques enable the surgeon to apply and combine the essential components of the basic principles for the treatment of mechanically impaired bone. The key components employed in modern implants include integrated compression techniques, multidirectional angular stability, expandable support surfaces, as well as multiple augmentation options. However, despite modern implant technology, osteoporotic bone fractures remain a significant challenge for the orthopaedic surgeon and require meticulous planning and implementation of the basic principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Ali AM, Saleh M, Eastell R et al (2006) Influence of bone quality on the strength of internal and external fixation of tibial plateau fractures. J Orthop Res 24(11):2080–2086

    Article  PubMed  Google Scholar 

  2. Augat P, Simon U, Liedert A, Claes L (2005) Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int 16(Suppl 2):S36–S43

    Article  PubMed  Google Scholar 

  3. Beall DP, Datir A, D’Souza SL et al (2010) Percutaneous treatment of insufficiency fractures: principles, technique and review of literature. Skeletal Radiol 39(2): 117–130

    Article  PubMed  Google Scholar 

  4. Becker S, Chavanne A, Spitaler R et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17(11):1462–1469

    Article  CAS  PubMed  Google Scholar 

  5. Bonnaire F, Zenker H, Lill C et al (2005) Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos Int 16(Suppl 2):S93–S102

    Article  PubMed  Google Scholar 

  6. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15(4):577–584

    Article  CAS  PubMed  Google Scholar 

  7. n. a. (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  8. Cooper C (1999) Epidemiology of osteoporosis. Osteoporos Int 9(Suppl 2):S2–S8

    Article  PubMed  Google Scholar 

  9. Fulkerson E, Egol KA, Kubiak EN et al (2006) Fixation of diaphyseal fractures with a segmental defect: a biomechanical comparison of locked and conventional plating techniques. J Trauma 60(4):830–835

    Article  PubMed  Google Scholar 

  10. Gautier E, Sommer C (2003) Guidelines for the clinical application of the LCP. Injury 34(Suppl 2):B63–B76

    Article  PubMed  Google Scholar 

  11. Gerstenfeld LC, Cullinane DM, Barnes GL et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884

    Article  CAS  PubMed  Google Scholar 

  12. Goldhahn J, Suhm N, Goldhahn S et al (2007) Influence of osteoporosis on fracture fixation – a systematic literature review. Osteoporos Int 19(6):761–772

    Article  Google Scholar 

  13. Guggenbuhl P, Meadeb J, Chales G (2005) Osteoporotic fractures of the proximal humerus, pelvis, and ankle: epidemiology and diagnosis. Joint Bone Spine 72(5):372–375

    Article  PubMed  Google Scholar 

  14. Holroyd C, Cooper C, Dennison E (2008) Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab 22(5):671–685

    Article  PubMed  Google Scholar 

  15. Ismail AA, Pye SR, Cockerill WC et al (2002) Incidence of limb fracture across Europe: results from the European prospective osteoporosis study (EPOS). Osteoporos Int 13(7):565–571

    Article  CAS  PubMed  Google Scholar 

  16. Jensen ME, McGraw JK, Cardella JF, Hirsch JA (2007) Position statement on percutaneous vertebral augmentation: a consensus statement developed by the American Society of Interventional and Therapeutic Neuroradiology, Society of Interventional Radiology, American Association of Neurological Surgeons/Congress of Neurological Surgeons, and American Society of Spine Radiology. AJNR Am J Neuroradiol 28(8):1439–1443

    CAS  PubMed  Google Scholar 

  17. Kasperk C, Noldge G, Grafe I et al (2008) Indications and results of kypho- and vertebroplasty. Internist (Berl) 49(10):1206–1218

    Google Scholar 

  18. Kim T, Ayturk UM, Haskell A et al (2007) Fixation of osteoporotic distal fibula fractures: a biomechanical comparison of locking versus conventional plates. J Foot Ankle Surg 46(1):2–6

    Article  PubMed  Google Scholar 

  19. Koistinen A, Santavirta SS, Kroger H, Lappalainen R (2005) Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws. Biomaterials 26(28):5687–5694

    Article  CAS  PubMed  Google Scholar 

  20. Kouvidis GK, Sommers MB, Giannoudis PV et al (2009) Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation. J Orthop Surg Res 4:16

    Article  PubMed  Google Scholar 

  21. Lill CA, Hesseln J, Schlegel U et al (2003) Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res 21(5):836–842

    Article  CAS  PubMed  Google Scholar 

  22. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312 (7041):1254–1259

    CAS  PubMed  Google Scholar 

  23. Meyer RA Jr, Tsahakis PJ, Martin DF et al (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19(3):428–435

    Article  PubMed  Google Scholar 

  24. Miller DL, Goswami T (2007) A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech 22(10):1049–1062

    Article  Google Scholar 

  25. Seebeck J, Goldhahn J, Stadele H et al (2004) Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res 22(6):1237–1242

    Article  CAS  PubMed  Google Scholar 

  26. Seide K, Triebe J, Faschingbauer M et al (2007) Locked vs. unlocked plate osteosynthesis of the proximal humerus – a biomechanical study. Clin Biomech 22(2):176–182

    Article  CAS  Google Scholar 

  27. Tingart MJ, Apreleva M, Lehtinen J et al (2004) Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med 32(6):1466–1473

    Article  PubMed  Google Scholar 

  28. Staa TP van, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29(6):517–522

    Article  PubMed  Google Scholar 

  29. Waits C, Burton D, McIff T (2009) Cement augmentation of pedicle screw fixation using novel cannulated cement insertion device. Spine 34(14):E478–E483

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

P. Augat erhält Forschungsförderung folgender Firmen: Stryker, Aesculap, Synthes, Arthrex, ITS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Augat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augat, P., Bühren, V. Modernes Implantatdesign für Osteosynthesen bei vorbestehender Osteoporose. Orthopäde 39, 397–406 (2010). https://doi.org/10.1007/s00132-009-1572-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1572-x

Schlüsselwörter

Keywords

Navigation