Skip to main content

Advertisement

Log in

Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An anaerobic incubation mixture of two bacterial strains Eggerthella sp. Julong 732 and Lactobacillus sp. Niu-O16, which have been known to transform dihydrodaidzein to S-equol and daidzein to dihydrodaidzein respectively, produced S-equol from daidzein through dihydrodaidzein. The biotransformation kinetics of daidzein by the mixed cultures showed that the production of S-equol from daidzein was significantly enhanced, as compared to the production of S-equol from dihydrodaidzein by Eggerthella sp. Julong 732 alone. The substrate daidzein in the mixed culture was almost completely converted to S-equol in 24 h of anaerobic incubation. The increased production of S-equol from daidzein by the mixed culture is likely related to the increased bacterial numbers of Eggerthella sp. Julong 732. In the mixture cultures, the growth of Eggerthella sp. Julong 732 was significantly increased while the growth of Lactobacillus sp. Niu-O16 was suppressed as compared to either the single culture of Eggerthella sp. Julong 732 or Lactobacillus sp. Niu-O16. This is the first report in which two metabolic pathways to produce S-equol from daidzein by a mixed culture of bacteria isolated from human and bovine intestinal environments were successfully linked under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adlercreutz H et al (1986) Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets. J Steroid Biochem 25:791–797

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz H, Hamalainen H, Gorbach S, Goldin S (1992) Dietary phyto-oestrogens and the menopause in Japan (letter). Lancet 339:1233

    Article  PubMed  CAS  Google Scholar 

  • Akaza H et al (2004) Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol 34:86–89

    Article  PubMed  Google Scholar 

  • Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KDR (1982) The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl) chroman] in human urine. Biochem J 201:353–357

    PubMed  CAS  Google Scholar 

  • Borriello SP, Setchell KDR, Axelson M, Lawson AM (1985) Production and metabolism of lignans by the human fecal flora. J Appl Bacteriol 58:37–43

    PubMed  CAS  Google Scholar 

  • Bowey E, Adlercreutz H, Rowland I (2003) Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol 41:631–636

    Article  PubMed  CAS  Google Scholar 

  • Coldham NG et al (1999) Biotransforming of genistein in the rat: elucidation of metabolite structure by production mass fragmentology. J Steroid Biochem Mole Biol 70:168–184

    Google Scholar 

  • Common R, Aimsworth L (1961) Identification of equol in the urine of the domestic fowl. Biochim Biophys Acta 53:403–404

    Article  PubMed  CAS  Google Scholar 

  • French CE, Bruce NC (1995) Bacterial morphinone reductase is related to old yellow enzyme. Biochem J 312(Pt 3):671–678

    PubMed  CAS  Google Scholar 

  • Hartman PE, Shankel DM (1990) Antimutagens and anticarcinogens: a survey of putative interceptor molecules. Environ Mol Mutagen 15:145–182

    PubMed  CAS  Google Scholar 

  • Heinonen SM, Hoikkala A, Wahala K, Adlercreutz H (2003) Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol 87:285–299

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Gotoh M, Oka K (1994) Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci 55:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Oka K, Akiba M (1989) Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line, ZR-75–1. Res Commun Chem Pathol Pharmacol 64:69–78

    PubMed  CAS  Google Scholar 

  • Hur HG, Lay JOJ, Beger RD, Freeman JP, Rafii F (2000) Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 174:422–428

    Article  PubMed  CAS  Google Scholar 

  • Jha HC, von Recklinghausen G, Zilliken F (1985) Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids Biochem. Pharmacol 34:1367–1369

    CAS  Google Scholar 

  • Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 54:167–184

    Article  PubMed  CAS  Google Scholar 

  • Johnson MJ, Thatcher E, Cox ME (1995) Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33:755–758

    PubMed  CAS  Google Scholar 

  • Juniewicz PE, Pallante MS, Moster A, Ewing LL (1988) Identification of phytoestrogens in the urine of male dogs. J Steroid Biochem 31:987–994

    Article  PubMed  CAS  Google Scholar 

  • Lampe JW, Karr SC, Hutchins AM, Slavin JL (1998) Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med 217:335–339

    PubMed  CAS  Google Scholar 

  • Luk K, Stern L, Weigele M (1983) Isolation and identification of “diazepam- like” compounds from bovine urine. J Nutr Proc 46:852–861

    CAS  Google Scholar 

  • Marrian GF, Haselwood GAD (1932) Equol, a new inactive phenol isolated from the ketohydroxyoestrin fraction of mares urine. Biochem Biochem J 26:1226–1232

    CAS  Google Scholar 

  • Monfort SL, Thompson MA, Czekala NM, Kasman LH, Shackleton CH, Lasley BL (1984) Identification of a non-steroidal estrogen, equol, in the urine of pregnant macaques: correlation with steroidal estrogen excretion. J Steroid Biochem 20:869–876

    Article  PubMed  CAS  Google Scholar 

  • Muthyala RS et al (2004) Equol, a natural estrogenic metabolite from soy isoflavones:convenient preparation and resolution of R- and S-equols and their different binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem 12:1559–1567

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Li L, Schwabacher AW, Young JW, Beitz DC (1996) Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61:33–40

    Article  PubMed  CAS  Google Scholar 

  • Rowland I, Wiseman H, Sanders T (1999) Metabolism of oestrogens and phytoestrogens: role of the gut microflora. Biochem Soc Trans 27:304–308

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy N, Wang TTY (1997) Differential effects of dietary phytoestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur J Cancer 33:2384–2389

    Article  PubMed  CAS  Google Scholar 

  • Setchell KDR, Adlercreutz H (1988) Mammalian lignans and phytoestrogens: recent studies on their formation, metabolism, and biological role in health and disease. In: Rowland IR (ed) Role of the gut flora in toxicity and cancer. Academic, London, pp 315–345

    Google Scholar 

  • Setchell KDR, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584

    PubMed  CAS  Google Scholar 

  • Simons AL, Renouf M, Hendrich S, Murphy PA (2005) Metabolism of glycitein (7,4′-dihydroxy-6-methoxy-isoflavone) by human gut microflora. J Agric Food Chem 53:8519–8525

    Article  PubMed  CAS  Google Scholar 

  • Wang XL, Hur HG, Lee JH, Kim KT, Kim SI (2005a) Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71:214–219

    Article  CAS  Google Scholar 

  • Wang XL, Shin KH, Hur HG, Kim SI (2005b) Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. J Biotechnol 115:261–269

    Article  CAS  Google Scholar 

  • Zheng Y, Hu J, Murphy PA, Alekel DL, Franke WD, Hendrich S (2003) Rapid gut transit time and slow fecal isoflavone disappearance phenotype are associated with greater genistein bioavailability in women. J Nutr 133:3110–3116

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. A. Kanaly at Kyoto University, Japan, for editorial comments. This work was supported by Korea Research Foundation Grant KRF-2004–041-F00014, Korea and by a grant from the MOST/KOSEF to the Environmental Biotechnology National Core Research Center (grant #: R15-2003-012-02002-0), Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Il Kim or Hor-Gil Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XL., Kim, HJ., Kang, SI. et al. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch Microbiol 187, 155–160 (2007). https://doi.org/10.1007/s00203-006-0183-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0183-8

Keywords

Navigation