Skip to main content
Log in

The quinohaemoprotein alcohol dehydrogenase from Gluconacetobacter xylinus: molecular and catalytic properties

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Gluconacetobacter xylinus possesses a constitutive membrane-bound oxidase system for the use of ethanol. Its alcohol dehydrogenase complex (ADH) was purified to homogeneity and characterized. It is a 119-kDa heterodimer (68 and 41 kDa subunits). The peroxidase reaction confirmed the presence of haem C in both subunits. Four cytochromes c per enzyme were determined by pyridine hemochrome spectroscopy. Redox titrations of the purified ADH revealed the presence of four haem c redox centers, with apparent mid-point potential values (Em7) of −33, +55, +132 and +310 mV, respectively. The ADH complex contains one mol of pyrroloquinoline quinone as determined by HPLC. The enzyme was purified in full reduced state; oxidation was induced by potassium ferricyanide and substrate restores full reduction. Activity responses to pH were sharp, showing two distinct optimal pH values (i.e. pH 5.5 and 6.5) depending on the electron acceptor used. Purified ADH oxidizes primary alcohols (C2–C6) but not methanol. Noteworthy, aliphatic aldehydes (C1–C4) were also good substrates. Myxothiazol and antymicin A were powerful inhibitors of the purified ADH complex, most likely acting at the ubiquinone acceptor site in subunit II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi O, Miyagawa E, Shinagawa E, Matsushita K, Ameyama M (1978a) Purification and properties of particulate alcohol dehydrogenase from Acetobacter aceti. Agric Biol Chem 42:2331–2340

    CAS  Google Scholar 

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978b) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42:2045–2056

    CAS  Google Scholar 

  • Ameyama M, Adachi O (1982) Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. Methods Enzymol 89:450–457

    Article  CAS  Google Scholar 

  • Anthony C, Zatman LJ (1967) The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 104:960–969

    CAS  PubMed  Google Scholar 

  • Chan HT, Anthony C (1991) The o-type oxidase of the acidophilic methylotroph Acetobacter methanolicus. J Gen Microbiol 137:693–704

    CAS  Google Scholar 

  • Chávez-Pacheco JL, Martínez-Yee S, Contreras ML, Gómez-Manzo S, Membrillo-Hernández J, Escamilla JE (2005) Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology. J Appl Microbiol 99:1130–1140

    Article  PubMed  Google Scholar 

  • de Jong GA, Caldeira J, Sun J, Jongejan JA, de Vries S, Loehr TM, Moura I, Moura JJ, Duine JA (1995a) Characterization of the interaction between PQQ and haem C in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. Biochemistry 34:9451–9458

    Article  PubMed  Google Scholar 

  • de Jong GA, Geerlof A, Stoorvogel J, Jongejan JA, de Vries S, Duine JA (1995b) Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni. Purification, characterization, and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur J Biochem 230:899–905

    Article  PubMed  Google Scholar 

  • Dekker RH, Duine JA, Frank J, Verwiel PE, Westerling J (1982) Covalent addition of H2O, enzyme substrates and activators to pyrrolo-quinoline quinone, the coenzyme of quinoproteins. Eur J Biochem 125:69–73

    Article  CAS  PubMed  Google Scholar 

  • Del Arenal IP, Contreras ML, Svlateorova BB, Rangel P, Lledias F, Dávila JR, Escamilla JE (1997) Haem O and a putative cytochrome bo’ in a mutant of Bacillus cereus impaired in the synthesis of haem A. Arch Microbiol 167:24–31

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  CAS  PubMed  Google Scholar 

  • Dutton PL (1978) Redox potentiometry: determination of midpoint potentials of oxidation-reduction components in biological electron transfer systems. Methods Enzymol 54:411–435

    Article  CAS  PubMed  Google Scholar 

  • Escamilla JE, Ramírez R, del Arenal IP, Zarzoza G, Linares V (1987) Expression of cytochrome oxidases in Bacillus cereus: effects of oxygen tension and carbon source. J Gen Microbiol 133:3549–3555

    CAS  Google Scholar 

  • Frébortová J, Matsushita K, Yakushi T, Toyama H, Adachi O (1997) Quinoprotein alcohol dehydrogenase of acetic acid bacteria: kinetic study on the enzyme purified from Acetobacter methanolicus. Biosci Biotechnol Biochem 61:459–465

    Article  Google Scholar 

  • Gómez-Manzo S, Contreras-Zentella M, González-Valdés A, Sosa-Torres M, Arreguín-Espinosa R, Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125:71–78

    Article  PubMed  Google Scholar 

  • Gómez-Manzo S, Solano-Peralta A, Saucedo-Vázquez JP, Escamilla-Marván JE, Kroneck PMH, Sosa-Torres ME (2010) The membrane-bound quinohemoprotein alcohol dehydrogenase from Gluconacetobacter diazotrophicus PAL5 Carries a [2Fe-2S] Cluster. Biochemistry 49:2409–2415

    Article  PubMed  Google Scholar 

  • González B, Martínez S, Chávez JL, Lee S, Castro NA, Domínguez MA, Gómez S, Contreras ML, Kennedy C, Escamilla JE (2006) Respiratory system of Gluconacetobacter diazotrophicus PAL5. Evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. Biochimica et Bhiophysica Acta 1757(12):1614–1622

    Article  Google Scholar 

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microbial Physiol 40:1–80

    Article  CAS  Google Scholar 

  • Groen BW, van Kleef MAG, Duine JA (1986) Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem J 234:611–615

    CAS  PubMed  Google Scholar 

  • Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated cultures. J Biosci Bioeng 88:183–188

    Article  CAS  PubMed  Google Scholar 

  • Islami M, Shabani A, Saifi-Abolhassan M, Sepehr SH, Soudi MR, Mossavi-Nejad SZ (2008) Purification and characterization of alcohol dehydrogenase from Gluconobacter suboxydans. Pakistan J Biol Sci 11(2):208–213

    Article  CAS  Google Scholar 

  • Jongejan A, Jongejan JA, Duine JA (1998) Homology model of the quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni. Protein Eng 11:185–198

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Horinuochi S (1997) Characterization of the genes encoding the three component membrane bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63:1131–1138

    CAS  PubMed  Google Scholar 

  • Kouda T, Naritomi K, Yano H, Yoshinaga F (1997) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated cultures. J Ferment Bioeng 84:124–127

    Article  CAS  Google Scholar 

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Mis′kiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Markwell MAK, Hass SM, Tolber NE, Bieber LL (1981) Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol 72:296–303

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Takaki Y, Shinagawa E, Ameyama M, Adachi O (1992) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci Biotechnol Biochem 56:304–310

    Article  CAS  Google Scholar 

  • Matsushita K, Yakushi T, Takaki Y, Toyama H, Adachi O (1995) Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in Gluconobacter suboxydans. J Bacteriol 177:6552–6559

    CAS  PubMed  Google Scholar 

  • Matsushita K, Yakushi T, Toyama H, Shinagawa E, Adachi O (1996) Function of multiple heme C moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J Biol Chem 271(9):4850–4857

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Kobayashi Y, Mizuguchi M, Toyama H, Adachi O, Sakamoto K, Miyoshi H (2008) A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic bacterium Gluconobacter suboxydans. Biosci Biotechnol Biochem 72(10):2723–2731

    Article  CAS  PubMed  Google Scholar 

  • Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506

    Article  CAS  PubMed  Google Scholar 

  • Ramana KV, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  PubMed  Google Scholar 

  • Schrover JM, Frank J, van Wielink JE, Duine JA (1993) Quaternary structure of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa and its reoxidation with a novel cytochrome c from this organism. Biochem J 290:123–127

    CAS  PubMed  Google Scholar 

  • Tayama K, Fukaya M, Okumura H, Kawamura Y, Beppu T (1989) Purification and characterization of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes. Appl Microbiol Biotechnol 32:181–185

    Article  CAS  Google Scholar 

  • Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of peroxidase activity of cytochrome P450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176

    Article  CAS  PubMed  Google Scholar 

  • Torimura M, Kano K, Ikeda T, Ueda T (1997) Spectroelectrochemical characterization of quinohemoprotein alcohol dehydrogenase from Gluconobacter suboxydans. Chem Lett 525–526 CL-970105

  • Toyama H, Fujii A, Matsushita K, Shinagawa E, Ameyama M, Adachi O (1995) Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177:2442–2450

    CAS  PubMed  Google Scholar 

  • Toyama H, Mathews FS, Adachi O, Matsushita K (2004) Quinohemoprotein alcohol dehydrogenases: structures, function, and physiology. Arch Biochem Biophys 428:10–21

    Article  CAS  PubMed  Google Scholar 

  • Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose producing Acetobacter strains suitable for agitation culture. Biosci Biotechnol Biochem 59:1498–1502

    Article  CAS  Google Scholar 

  • Trcek J, Toyama K, Czuba J, Misiewicz A, Matsushita K (2006) Correlation between acetic acid resistance and characteristics of PQQ dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 70:366–373

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S, Watanabe K (1994) Applications of bacterial cellulose in cellulosic polymers. In: Gilbert R (ed.) Hanser Publishers Inc., Cincinnati, OH. Chapter 11

Download references

Acknowledgments

This work was supported in part by grants from Consejo Nacional de Ciencia y Tecnología 50672 and by Universidad Nacional Autónoma de México (Programa de Apoyo a Proyectos de investigación e Innovación Tecnológica UNAM, IN220508). We are grateful to Juan Manuel Barbosa Castillo and Ivette Rosas Arciniega for assistance in computer techniques and María del Rocío Romualdo Martínez for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Escamilla.

Additional information

Communicated by Timothy Donohue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez-Pacheco, J.L., Contreras-Zentella, M., Membrillo-Hernández, J. et al. The quinohaemoprotein alcohol dehydrogenase from Gluconacetobacter xylinus: molecular and catalytic properties. Arch Microbiol 192, 703–713 (2010). https://doi.org/10.1007/s00203-010-0598-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0598-0

Keywords

Navigation