Skip to main content

Advertisement

Log in

Metabolism of arsenic in human liver: the role of membrane transporters

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Metabolism of inorganic arsenic (iAs) is one of the key factors determining the character of adverse effects associated with exposure to iAs. Results of previous studies indicate that liver plays a primary role in iAs metabolism. This paper reviews these results and presents new data that link the capacity of human hepatocytes to metabolize iAs to the expression of specific membrane transporters. Here, we examined relationship between the expression of potential arsenic transporters (AQP9, GLUT2, P-gp, MRP1, MRP2, and MRP3) and the production and cellular retention of iAs and its methylated metabolites in primary cultures of human hepatocytes exposed for 24 h to subtoxic concentrations of arsenite. Our results show that the retention of iAs and methylarsenic metabolites (MAs) by hepatocytes exposed to sub-micromolar concentrations of arsenite correlates negatively with MRP2 expression. A positive correlation was found between MRP2 expression and the production of dimethylarsenic metabolites (DMAs), specifically, the concentration of DMAs in culture media. After exposures to high micromolar concentrations of arsenite which almost completely inhibited MAs and DMAs production, a positive correlation was found between the expression of GLUT2 and cellular retention of iAs and MAs. MRP3, AQP9, or P-gp expression had no effect on the production or distribution of iAs, MAs, or DMAs, regardless of the exposure level. Hepatocytes from seven donors used in this study did not contain detectable amounts of MRP1 protein. These data suggest that MRP2 plays an important role in the efflux of DMAs, thus, regulating kinetics of the methylation reactions and accumulation of iAs and MAs by human hepatocytes. The membrane transport of iAs by high-capacity GLUT2 transporters is not a rate-limiting step for the metabolism of arsenite at low exposure level, but may play a key role in accumulation of iAs after acute exposures which inhibit iAs methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP (2005) Molecular events associated with arsenic induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and oncogene activation. Toxicol Appl Pharmacol 206:288–298

    Article  CAS  PubMed  Google Scholar 

  • Benramdane L, Accominotti M, Fanton L, Malicier D, Vallon J-J (1999) Arsenic speciation in human organs following fatal arsenic trioxide poisoning—a case report. Clin Chem 45:301–306

    CAS  PubMed  Google Scholar 

  • Bhattacharjee H, Carbrey J, Rosen BP, Mukhopadhyay R (2004) Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Commun 322:836–841

    Article  CAS  PubMed  Google Scholar 

  • Brambila EM, Achanzar WE, Qu W, Webber MM, Waalkes MP (2002) Chronic arsenic-exposed human prostate epithelial cells exhibit stable arsenic tolerance: mechanistic implications of altered cellular glutathione and glutathione S-transferase. Toxicol Appl Pharmacol 183:99–107

    Article  CAS  PubMed  Google Scholar 

  • Bredfeldt TG, Jagadish B, Eblin KE, Mash EA, Gandolfi AJ (2006) Monomethylarsonous acid induces transformation of human bladder cells. Toxicol Appl Pharmacol 216:69–79

    Article  CAS  PubMed  Google Scholar 

  • Buchet JP, Lauwerys R (1985) Study of inorganic arsenic methylation by rat in vitro: relevance for the interpretation of observations in man. Arch Toxicol 57:125–129

    Article  CAS  PubMed  Google Scholar 

  • Buchet JP, Geubel A, Pauwels S, Mahieu P, Lauwerys R (1984) The influence of liver disease on the methylation of arsenite in humans. Arch Toxicol 55:151–154

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Ohnishi T, Arnold LL, Le XC (2007) Arsenic-induced bladder cancer in an animal model. Toxicol Appl Pharmacol 222:258–263

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, McBride BC, Reglinski J (1984) The reaction of methylarsenicals with thiols: some biological implications. J Inorg Biochem 21:179–194

    Article  CAS  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsenate by glutathione: a multinuclear magnetic resonance study. Chem-Biol Interact 90:139–155

    Article  CAS  PubMed  Google Scholar 

  • Devesa V, Del Razo LM, Adair B, Drobná Z, Waters SB, Hughes MF, Styblo M, Thomas DJ (2004) Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. J Anal At Spectrom 19:1460–1467

    Article  CAS  Google Scholar 

  • Drobná Z, Jaspers I, Thomas DJ, Styblo M (2003) Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals. FASEB J 17:67–69

    PubMed  Google Scholar 

  • Drobná Z, Waters SB, Walton FS, LeCluyse EL, Thomas DJ, Styblo M (2004) Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicol Appl Pharmacol 201:166–177

    Article  PubMed  CAS  Google Scholar 

  • Drobná Z, Waters SB, Devesa V, Harmon AW, Thomas DJ, Stýblo M (2005) Metabolism and toxicity of As in human urothelial cells expressing rat arsenic (+3 oxidation state) methyltransferase. Toxicol Appl Pharmacol 207:147–159

    Article  PubMed  CAS  Google Scholar 

  • Drobná Z, Xing W, Thomas DJ, Stýblo M (2006) shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chem Res Toxicol 19:894–898

    Article  PubMed  CAS  Google Scholar 

  • Geubel AP, Mairlot MC, Buchet JP, Dive C, Lauwerys R (1988) Abnormal methylation capacity in human liver cirrhosis. Int J Pharm Res VIII(2):117–122

    Google Scholar 

  • Healy SM, Wildfang E, Zakharyan RA, Aposhian HV (1999) Diversity of inorganic arsenite biotransformation. Biol Trace Element Res 68:249–266

    Article  CAS  Google Scholar 

  • Hepner GW, Vesell ES (1975) Quantitative assessment of hepatic function by breath analysis after oral administration of (14C)aminopyrine. Ann Internal Med 83:632–638

    CAS  Google Scholar 

  • Hernández A, Xamena N, Sekaran C, Tokunaga H, Sampayo-Reyes A, Quinteros D, Creus A, Marcos R (2008a) High arsenic metabolic efficiency in AS3MT287Thr allele carriers. Pharmacogenet Genomics 18:349–355

    Article  PubMed  CAS  Google Scholar 

  • Hernández A, Xamena N, Surrallés J, Sekaran C, Tokunaga H, Quinteros D, Creus A, Marcos R (2008b) Role of the Met(287)Thr polymorphism in the AS3MT gene on the metabolic arsenic profile. Mutat Res 637:80–92

    PubMed  Google Scholar 

  • Hirata M, Mohri T, Hisanaga A, Ishinishi N (1989) Conversion of arsenite and arsenate to methylarsenic and dimethylarsenic compounds by homogenates prepared from livers and kidneys of rats and mice. Appl Organomet Chem 3:335–341

    Article  CAS  Google Scholar 

  • Hoffmaster KA, Turncliff RZ, LeCluyse EL, Kim RB, Meier PJ, Brouwer KLR (2004) P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes: relevance to the hepatobiliary disposition of a model opioid peptide. Pharm Res 21:1294–1302

    Article  CAS  PubMed  Google Scholar 

  • Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275:33404–33408

    Article  CAS  PubMed  Google Scholar 

  • Kiermayer C, Michalke B, Schmidt J, Brielmeier M (2007) Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice. Biol Chem 388:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Konig J, Rost D, Cui Y, Keppler D (1999) Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 29:1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim J, Kwon K, Yoon HW, Levine RL, Ginsburg A, Rhee SG (1999) Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem 274:4722–4734

    Article  CAS  PubMed  Google Scholar 

  • Lee TC, Ho IC, Lu WJ, Huang JD (2006) Enhanced expression of Multidrug resistance-associated protein 2 and reduced expression of Aquaglyceroporin 3 in am arsenic-resistant human cell line. J Biol Chem 281:18401–18407

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Pang A, Yuen WH, Kwong YL, Tse EWC (2007) Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood 109:740–746

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Cullen WR, Thomas DJ (1999) Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 12:924–930

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-Adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803

    Article  CAS  PubMed  Google Scholar 

  • Lindberg AL, Kumar R, Goessler W, Thirumaran R, Gurzau E, Koppova K, Rudnai P, Leonardi G, Fletcher T, Vahter M (2007) Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086

    CAS  PubMed  Google Scholar 

  • Liu J, Chen H, Miller DS, Saavedra JE, Keefer LK, Johnson DR, Klaassen CD, Waalkes MP (2001) Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60:302–309

    CAS  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316:1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Styblo M, Rosen BP (2006a) Methylarsonous acid transport by aquaglyceroporins. Environ Health Perspect 114:527–531

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006b) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351:424–430

    Article  CAS  PubMed  Google Scholar 

  • Lu WJ, Tamai I, Nezu J, Lai ML, Huang JD (2006) Organic anion transporting polypeptide-C mediates arsenic uptake in HEK-293 cells. J Biomed Sci 13:525–533

    Article  CAS  PubMed  Google Scholar 

  • Mahagita C, Grassl SM, Piyachaturawat P, Ballatori N (2007) Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH-bile acid cotransport. Am J Physiol Gastrointest Liver Physiol 293:G271–G278

    Article  CAS  PubMed  Google Scholar 

  • Maheu P, Buchet JP, Roels HA, Lauwerys R (1987) The metabolism of arsenic in humans acutely intoxicated by As2O3. Clin Toxicol 18:1067–1075

    Article  Google Scholar 

  • Marafante E, Vahter M, Envall J (1985) The role of methylation in the detoxification of arsenate in the rabbit. Chem-Biol Interact 56:225–238

    Article  CAS  PubMed  Google Scholar 

  • Mass MJ, Tennant A, Roop BC, Cullen WR, Styblo M, Thomas DJ, Kligerman AD (2001) Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14:355–361

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki Y, Yamamoto T, Higashino K (1999) Enzymes involved in purine metabolism—a review of histochemical localization and functional implications. Histol Histopathol 14:1321–1340

    CAS  PubMed  Google Scholar 

  • Mure K, Uddin AN, Lopez LC, Styblo M, Rossman TG (2003) Arsenite induces delayed mutagenesis and transformation in human osteosarcoma cells at extremely low concentrations. Environ Mol Mutagen 41:322–331

    Article  CAS  PubMed  Google Scholar 

  • Naranmandura H, Ibata K, Suzuki KT (2007) Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chem Res Toxicol 2:1120–1125

    Article  CAS  Google Scholar 

  • Németi B, Csanaky I, Gregus Z (2006) Effect of an inactivator of glyceraldehyde-3-phosphate dehydrogenase, a fortuitous arsenate reductase, on disposition of arsenate in rats. Tox Sci 90:49–60

    Article  CAS  Google Scholar 

  • Paul DS, Harmon AW, Devesa V, Thomas DJ, Styblo M (2007) Molecular mechanisms of diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect 115:734–742

    CAS  PubMed  Google Scholar 

  • Payen L, Courtois A, Campion JP, Guillouzo A, Fardel O (2000) Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem Pharmacol 60:1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian VH (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    Article  CAS  PubMed  Google Scholar 

  • Petrick JS, Jagadish B, Mash EA, Aposhian HV (2001) Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656

    Article  CAS  PubMed  Google Scholar 

  • Planchamp C, Hadengue A, Stieger B, Bourquin J, Vonlaufen A, Frossard JL, Quadri R, Becker CD, Pastor CM (2007) Function of both sinusoidal and canalicular transporters controls the concentration of organic anions within hepatocytes. Mol Pharmacol 71:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Raml R, Rumpler A, Goessler W, Vahter M, Li L, Ochi T, Francesconi KA (2007) Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol Appl Pharmacol 222:374–380

    Article  CAS  PubMed  Google Scholar 

  • Reay PF, Asher CJ (1977) Preparation and purification of 74As-labeled arsenate and arsenite for use in biological experiments. Anal Biochem 78:557–560

    Article  CAS  PubMed  Google Scholar 

  • Roach PJ (2002) Glycogen and its metabolism. Curr Mol Med 2:101–120

    Article  CAS  PubMed  Google Scholar 

  • Sens DA, Park S, Gurel V, Sens MA, Garrett SH, Somji S (2004) Inorganic cadmium- and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sci 79:56–63

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Thomas DJ (1997) Binding of arsenicals to proteins in an in vitro methylation system. Toxicol Appl Pharmacol 147:1–8

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Delnomdedieu M, Thomas DJ (1995a) Biological mechanism and toxicological consequences of the methylation of arsenic. In: Goyer RA, Cherian MG (eds) Handbook of experimental pharmacology, vol 115, toxicology of metals—biochemical aspects. Springer, New York, pp 407–433

    Google Scholar 

  • Styblo M, Yamauchi H, Thomas DJ (1995b) Comparative in vitro methylation of trivalent and pentavalent arsenic species. Toxicol Appl Pharmacol 135:172–178

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Del Razo LM, LeCluyse EL, Hamilton GA, Wang C, Cullen WR, Thomas DJ (1999) Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem Res Toxicol 12:560–565

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in human cells. Arch Toxicol 74:289–299

    Article  CAS  PubMed  Google Scholar 

  • Styblo M, Drobná Z, Jaspers I, Lin S, Thomas DJ (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic. A research update. Environ Health Perspect 110(Suppl 5):767–771

    CAS  PubMed  Google Scholar 

  • Takeshita A, Shinjo K, Naito K, Matsui H, Shigeno K, Nakamura S, Horii T, Maekawa M, Kitamura K, Naoe T, Ohmishi K, Ohno R (2003) P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are induced by arsenic trioxide (As2O3), but are not the main mechanism of As2O3-resistance in acute promyelotic leukemia cells. Leukemia 17:648–650

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Styblo M, Shan L (2001) Cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M (2007) Arsenic (+3 oxidation state) methyltransferase and methylation of arsenicals. Exp Biol Med 232:3–13

    CAS  Google Scholar 

  • Vega L, Styblo M, Patterson R, Cullen W, Wang C, Germolec D (2001) Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol Appl Pharmacol 172:225–232

    Article  CAS  PubMed  Google Scholar 

  • Vernhet L, Seite MP, Allain N, Guillouzo A, Fardel O (2001) Arsenic induces expression of the multidrug resistance-associated protein 2 (MRP2) gene in primary rat and human hepatocytes. J Pharmacol Exp Ther 298:234–239

    CAS  PubMed  Google Scholar 

  • Walton FS, Waters SB, Jolley SL, LeCluyse EL, Thomas DJ, Styblo M (2003) Selenium compounds modulate the activity of recombinant rat AsIII-methyltransferase and the methylation of arsenite by rat and human hepatocytes. Chem Res Toxicol 16:261–265

    Article  CAS  PubMed  Google Scholar 

  • Walton FS, Harmo AW, Paul DS, Drobná Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 198:424–433

    Article  CAS  PubMed  Google Scholar 

  • Waters SB, Devesa-Perez V, Del Razo LM, Styblo M, Thomas DJ (2004a) Endogenous reductants support catalytic function of recombinant rat cyt19, an arsenic methyltransferase. Chem Res Toxicol 17:404–409

    Article  CAS  PubMed  Google Scholar 

  • Waters SB, Devesa V, Fricke MW, Creed JT, Styblo M, Thomas DJ (2004b) Glutathione modulates recombinant rat arsenic (+3 oxidation state) methyltransferase-catalyzed formation of trimethylarsine oxide and trimethylarsine. Chem Res Toxicol 17:1621–1629

    Article  CAS  PubMed  Google Scholar 

  • Wood TC, Salavagionne O, Mukherjee B, Wang L, Klumpp AF, Thomae BA, Eckloff BW, Schaid DJ, Wieben EC, Weinshilboum RM (2006) Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies. J Biol Chem 281:7364–7373

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Liu J, Liu Y, Klaassen CD, Waalkes MP (2004) Toxicokinetic and genomic analysis of chronic arsenic exposure in multidrug-resistance mdr1a/1b(−/−) double knockout mice. Mol Cell Biochem 255:11–18

    Article  CAS  PubMed  Google Scholar 

  • Yin ZL, Dahlstrom JE, Le Couteur DG, Board PG (2001) Immunohistochemistry of omega class glutathione S-transferase in human tissues. J Histochem Cytochem 49:983–987

    CAS  PubMed  Google Scholar 

  • Zhou L, Jing Y, Styblo M, Chen Z, Waxman S (2005) Glutathione S-transferase π inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide. Blood 105:1198–1203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Dr. Barry Rosen (Wayne State University) and Dr. Zijuan Liu (Oakland University) for useful and instructive discussions of the topics covered by this manuscript. The research presented here was supported by NIH grant R01 010845-01A2 to M.S., by US EPA Cooperative Agreement CR829522 and by the Clinical Nutrition Research Center Grant DK 56350. This manuscript has been reviewed in accordance with the policy of the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does mention of trade names or commercial products constitutes endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Stýblo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobná, Z., Walton, F.S., Paul, D.S. et al. Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 84, 3–16 (2010). https://doi.org/10.1007/s00204-009-0499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0499-7

Keywords

Navigation