Skip to main content
Log in

Cocaine-induced kidney toxicity: an in vitro study using primary cultured human proximal tubular epithelial cells

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Renal failure resulting from cocaine abuse has been well documented, although the underlying mechanisms remain to be investigated. In the present study, primary cultured human proximal tubular epithelial cells (HPTECs) of the kidney were used to investigate its ability to metabolize cocaine, as well as the cytotoxicity induced by cocaine and its metabolites benzoylecgonine (BE), ecgonine methyl ester (EME) and norcocaine (NCOC). Gas chromatography/ion trap-mass spectrometry (GC/IT-MS) analysis of HPTECs exposed to cocaine (1 mM) for 72 h confirmed its metabolism into EME and NCOC, but not BE. EME levels increased along the exposure time to cocaine, while NCOC concentration diminished after reaching a maximum at 6 h, indicating a possible secondary metabolism for this metabolite. Cocaine promoted a concentration-dependent loss of cell viability, whereas BE and EME were found to be non-toxic to HPTECs at the tested conditions. In contrast, NCOC revealed to have higher intrinsic nephrotoxicity than the parent compound. Moreover, cocaine-induced cell death was partially reversed in the presence of ketoconazole (KTZ), a potent CYP3A inhibitor, supporting the hypothesis that NCOC may play a role in cocaine-induced nephrotoxicity. Cocaine-induced cytotoxicity was found to involve intracellular glutathione depletion at low concentrations and to induce mitochondrial damage at higher concentrations. Under the present experimental conditions, HPTECs death pathway followed an apoptotic pattern, which was evident for concentrations as low as 0.1 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HPTECs:

Human proximal tubular epithelial cells

BE:

Benzoylecgonine

EME:

Ecgonine methyl ester

NCOC:

Norcocaine

GC/IT-MS:

Gas chromatography/ion trap-mass spectrometry

KTZ:

Ketoconazole

CYP450:

Cytochrome P450

AEME:

Anhydroecgonine methyl ester

CE:

Cocaethylene

PS:

Phophatidylserine

ROS:

Reactive oxygen species

References

  • Alvarez D, Nzerue CM, Daniel JF, Faruque S, Hewan-Lowe K (1999) Acute interstitial nephritis induced by crack cocaine binge. Nephrol Dial Transplant 14:1260–1262

    Article  PubMed  CAS  Google Scholar 

  • Amoedo ML, Craver L, Marco MP, Fernandez E (1999) Cocaine-induced acute renal failure without rhabdomyolysis. Nephrol Dial Transplant 14:2970–2971

    Article  PubMed  CAS  Google Scholar 

  • Andersen MH, Becker JC, Straten P (2005) Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4:399–409

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Ohmori M, Takimoto M, Ota H, Yoshida T (1997) Cocaine-induced liver injury in mice is mediated by nitric oxide and reactive oxygen species. Eur J Pharmacol 336:43–49

    Article  PubMed  CAS  Google Scholar 

  • Barroso-Moguel R, Mendez-Armenta M, Villeda-Hernandez J (1995) Experimental nephropathy by chronic administration of cocaine in rats. Toxicology 98:41–46

    Article  PubMed  CAS  Google Scholar 

  • Bemanian S, Motallebi M, Nosrati SM (2005) Cocaine-induced renal infarction: report of a case and review of the literature. BMC Nephrol 6:10

    Article  PubMed  Google Scholar 

  • Boelsterli UA, Goldlin C (1991) Biomechanisms of cocaine-induced hepatocyte injury mediated by the formation of reactive metabolites. Arch Toxicol 65:351–360

    Article  PubMed  CAS  Google Scholar 

  • Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM (2000) Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol 60:615–623

    Article  PubMed  CAS  Google Scholar 

  • Boyer CS, Petersen DR (1991) Hepatic biochemical changes as a result of acute cocaine administration in the mouse. Hepatology 14:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Capela JP, Macedo C, Branco PS, Ferreira LM, Lobo AM, Fernandes E, Remiao F, Bastos ML, Dirnagl U, Meisel A, Carvalho F (2007) Neurotoxicity mechanisms of thioether ecstasy metabolites. Neuroscience 146:1743–1757

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Milhazes N, Remiao F, Borges F, Fernandes E, Amado F, Monks TJ, Carvalho F, Bastos ML (2004) Hepatotoxicity of 3, 4-methylenedioxyamphetamine and alpha-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Arch Toxicol 78:16–24

    Article  PubMed  CAS  Google Scholar 

  • Charkoudian JC, Shuster L (1985) Electrochemistry of norcocaine nitroxide and related compounds: implications for cocaine hepatotoxicity. Biochem Biophys Res Commun 130:1044–1051

    Article  PubMed  CAS  Google Scholar 

  • Constan AA, Sprankle CS, Peters JM, Kedderis GL, Everitt JI, Wong BA, Gonzalez FL, Butterworth BE (1999) Metabolism of chloroform by cytochrome P450 2E1 is required for induction of toxicity in the liver, kidney, and nose of male mice. Toxicol Appl Pharmacol 160:120–126

    Article  PubMed  CAS  Google Scholar 

  • Cunha-Oliveira T, Rego AC, Cardoso SM, Borges F, Swerdlow RH, Macedo T, de Oliveira CR (2006) Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res 1089:44–54

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Harper ET, Dumaual N, Stoeckel DA, Bosron WF (1992) Effects of ethanol on cocaine metabolism: formation of cocaethylene and norcocaethylene. Toxicol Appl Pharmacol 117:1–8

    Article  PubMed  CAS  Google Scholar 

  • Devi BG, Chan AW (1996) Cocaine-induced peroxidative stress in rat liver: antioxidant enzymes and mitochondria. J Pharmacol Exp Ther 279:359–366

    PubMed  CAS  Google Scholar 

  • Dey S, Mactutus CF, Booze RM, Snow DM (2007) Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons by altering the Bax/Bcl-2 ratio and through caspase-3 apoptotic signaling. Neuroscience 144:509–521

    Article  PubMed  CAS  Google Scholar 

  • Diez-Fernandez C, Zaragoza A, Alvarez AM, Cascales M (1999) Cocaine cytotoxicity in hepatocyte cultures from phenobarbital-induced rats: involvement of reactive oxygen species and expression of antioxidant defense systems. Biochem Pharmacol 58:797–805

    Article  PubMed  CAS  Google Scholar 

  • Donnelly DA, Boyer CS, Petersen DR, Ross D (1988) Cocaine-induced biochemical changes and cytotoxicity in hepatocytes isolated from both mice and rats. Chem Biol Interact 67:95–104

    Article  PubMed  CAS  Google Scholar 

  • Drummer OH (2004) Postmortem toxicology of drugs of abuse. Forensic Sci Int 142:101–113

    Article  PubMed  CAS  Google Scholar 

  • Duysen EG, Li B, Carlson M, Li YF, Wieseler S, Hinrichs SH, Lockridge O (2008) Increased hepatotoxicity and cardiac fibrosis in cocaine-treated butyrylcholinesterase knockout mice. Basic Clin Pharmacol Toxicol 103:514–521

    Article  PubMed  CAS  Google Scholar 

  • Erzouki HK, Allen AC, Newman AH, Goldberg SR, Schindler CW (1995) Effects of cocaine, cocaine metabolites and cocaine pyrolysis products on the hindbrain cardiac and respiratory centers of the rabbit. Life Sci 57:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rostan y Perez GM, Garcia Bragado F, Puras Gil AM (1997) Pulmonary hemorrhage and antiglomerular basement membrane antibody-mediated glomerulonephritis after exposure to smoked cocaine (crack): a case report and review of the literature. Pathol Int 47:692–697

    Article  PubMed  Google Scholar 

  • Gitman MD, Singhal PC (2004) Cocaine-induced renal disease. Expert Opin Drug Saf 3:441–448

    Article  PubMed  CAS  Google Scholar 

  • Glauser J, Queen JR (2007) An overview of non-cardiac cocaine toxicity. J Emerg Med 32:181–186

    Article  PubMed  Google Scholar 

  • Goldstein RA, DesLauriers C, Burda A, Johnson-Arbor K (2009) Cocaine: history, social implications, and toxicity: a review. Semin Diagn Pathol 26:10–17

    Article  PubMed  Google Scholar 

  • Harris DS, Everhart ET, Mendelson J, Jones RT (2003) The pharmacology of cocaethylene in humans following cocaine and ethanol administration. Drug Alcohol Depend 72:169–182

    Article  PubMed  CAS  Google Scholar 

  • He J, Xiao Y, Casiano CA, Zhang L (2000) Role of mitochondrial cytochrome c in cocaine-induced apoptosis in coronary artery endothelial cells. J Pharmacol Exp Ther 295:896–903

    PubMed  CAS  Google Scholar 

  • Jatlow P (1988) Cocaine: analysis, pharmacokinetics, and metabolic disposition. Yale J Biol Med 61:105–113

    PubMed  CAS  Google Scholar 

  • Jenkins AJ, Levine B, Titus J, Smialek JE (1999) The interpretation of cocaine and benzoylecgonine concentrations in postmortem cases. Forensic Sci Int 101:17–25

    Article  PubMed  CAS  Google Scholar 

  • Karch SB, Stephens B, Ho CH (1998) Relating cocaine blood concentrations to toxicity—an autopsy study of 99 cases. J Forensic Sci 43:41–45

    PubMed  CAS  Google Scholar 

  • Kharasch ED, Hankins DC, Thummel KE (1995) Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology 82:689–699

    Article  PubMed  CAS  Google Scholar 

  • Kolbrich EA, Barnes AJ, Gorelick DA, Boyd SJ, Cone EJ, Huestis MA (2006) Major and minor metabolites of cocaine in human plasma following controlled subcutaneous cocaine administration. J Anal Toxicol 30:501–510

    PubMed  CAS  Google Scholar 

  • Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64:350–356

    Article  PubMed  CAS  Google Scholar 

  • Kump DF, Matulka RA, Edinboro LE, Poklis A, Holsapple MP (1994) Disposition of cocaine and norcocaine in blood and tissues of B6C3F1 mice. J Anal Toxicol 18:342–345

    PubMed  CAS  Google Scholar 

  • Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y (2007) CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 82:711–725

    Article  PubMed  CAS  Google Scholar 

  • Lash LH, Putt DA, Huang P, Hueni SE, Parker JC (2007) Modulation of hepatic and renal metabolism and toxicity of trichloroethylene and perchloroethylene by alterations in status of cytochrome P450 and glutathione. Toxicology 235:11–26

    Article  PubMed  CAS  Google Scholar 

  • LeDuc BW, Sinclair PR, Shuster L, Sinclair JF, Evans JE, Greenblatt DJ (1993) Norcocaine and N-hydroxynorcocaine formation in human liver microsomes: role of cytochrome P-450 3A4. Pharmacology 46:294–300

    Article  PubMed  CAS  Google Scholar 

  • Li H, Xu L, Dunbar JC, Dhabuwala CB (2003) Role of mitochondrial cytochrome c in cocaine-induced apoptosis in rat testes. Urology 61:646–650

    Article  PubMed  Google Scholar 

  • Lin Y, Leskawa KC (1994) Cytotoxicity of the cocaine metabolite benzoylecgonine. Brain Res 643:108–114

    Article  PubMed  CAS  Google Scholar 

  • Lombard J, Wong B, Young JH (1988) Acute renal failure due to rhabdomyolysis associated with cocaine toxicity. West J Med 148:466–468

    PubMed  CAS  Google Scholar 

  • Mackey-Bojack S, Kloss J, Apple F (2000) Cocaine, cocaine metabolite, and ethanol concentrations in postmortem blood and vitreous humor. J Anal Toxicol 24:59–65

    PubMed  CAS  Google Scholar 

  • Matsubara K, Kagawa M, Fukui Y (1984) In vivo and in vitro studies on cocaine metabolism: ecgonine methyl ester as a major metabolite of cocaine. Forensic Sci Int 26:169–180

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Imaoka S, Miura K, Tanaka E, Misawa S, Funae Y (1994) Induction of cytochrome P450 isozymes in rat renal microsomes by cyclosporin A. Biochem Pharmacol 48:1743–1746

    Article  PubMed  CAS  Google Scholar 

  • Nassogne MC, Louahed J, Evrard P, Courtoy PJ (1997) Cocaine induces apoptosis in cortical neurons of fetal mice. J Neurochem 68:2442–2450

    Article  PubMed  CAS  Google Scholar 

  • Ndikum-Moffor FM, Schoeb TR, Roberts SM (1998) Liver toxicity from norcocaine nitroxide, an N-oxidative metabolite of cocaine. J Pharmacol Exp Ther 284:413–419

    PubMed  CAS  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Pasanen M, Pellinen P, Stenback F, Juvonen RO, Raunio H, Pelkonen O (1995) The role of CYP enzymes in cocaine-induced liver damage. Arch Toxicol 69:287–290

    Article  PubMed  CAS  Google Scholar 

  • Patil CR, Jadhav RB, Singh PK, Mundada S, Patil PR (2010) Protective effect of oleanolic acid on gentamicin induced nephrotoxicity in rats. Phytother Res 24:33–37

    Article  PubMed  CAS  Google Scholar 

  • Peces R, Navascues RA, Baltar J, Seco M, Alvarez J (1999) Antiglomerular basement membrane antibody-mediated glomerulonephritis after intranasal cocaine use. Nephron 81:434–438

    Article  PubMed  CAS  Google Scholar 

  • Pellinen P, Honkakoski P, Stenback F, Niemitz M, Alhava E, Pelkonen O, Lang MA, Pasanen M (1994) Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. Eur J Pharmacol 270:35–43

    PubMed  CAS  Google Scholar 

  • Peretti FJ, Isenschmid DS, Levine B, Caplan YH, Smialek JE (1990) Cocaine fatality: an unexplained blood concentration in a fatal overdose. Forensic Sci Int 48:135–138

    Article  PubMed  CAS  Google Scholar 

  • Poklis A, Mackell MA, Graham M (1985) Disposition of cocaine in fatal poisoning in man. J Anal Toxicol 9:227–229

    PubMed  CAS  Google Scholar 

  • Poklis A, Maginn D, Barr JL (1987) Tissue disposition of cocaine in man: a report of five fatal poisonings. Forensic Sci Int 33:83–88

    Article  PubMed  CAS  Google Scholar 

  • Ponsoda X, Bort R, Jover R, Gomez-Lechon MJ, Castell JV (1999) Increased toxicity of cocaine on human hepatocytes induced by ethanol: role of GSH. Biochem Pharmacol 58:1579–1585

    Article  PubMed  CAS  Google Scholar 

  • Rauckman EJ, Rosen GM, Cavagnaro J (1982) Norcocaine nitroxide. A potential hepatotoxic metabolite of cocaine. Mol Pharmacol 21:458–463

    PubMed  CAS  Google Scholar 

  • Redinbo MR, Bencharit S, Potter PM (2003) Human carboxylesterase 1: from drug metabolism to drug discovery. Biochem Soc Trans 31:620–624

    Article  PubMed  CAS  Google Scholar 

  • Schaaf GJ, de Groene EM, Maas RF, Commandeur JN, Fink-Gremmels J (2001) Characterization of biotransformation enzyme activities in primary rat proximal tubular cells. Chem Biol Interact 134:167–190

    Article  PubMed  CAS  Google Scholar 

  • Shuster L, Garhart CA, Powers J, Grunfeld Y, Kanel G (1988) Hepatotoxicity of cocaine. NIDA Res Monogr 88:250–275

    PubMed  CAS  Google Scholar 

  • UNODC (2011) World Drug Report 2011. United Nations Publication Sales No. E.11.XI.10

  • Valente MJ, Carvalho F, Bastos ML, Carvalho M, de Pinho PG (2010) Development and validation of a gas chromatography/ion trap-mass spectrometry method for simultaneous quantification of cocaine and its metabolites benzoylecgonine and norcocaine: application to the study of cocaine metabolism in human primary cultured renal cells. J Chromatogr B Analyt Technol Biomed Life Sci 878:3083–3088

    Article  PubMed  CAS  Google Scholar 

  • Valente MJ, Henrique R, Costa VL, Jeronimo C, Carvalho F, Bastos ML, de Pinho PG, Carvalho M (2011) A rapid and simple procedure for the establishment of human normal and cancer renal primary cell cultures from surgical specimens. PLoS One 6:e19337

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wolf AP, Wang GJ, Logan J, MacGregor R, Dewey SL, Schlyer D, Hitzemann R (1992) Distribution and kinetics of carbon-11-cocaine in the human body measured with PET. J Nucl Med 33:521–525

    PubMed  CAS  Google Scholar 

  • Woods LA, Mc MF, Seevers MH (1951) Distribution and metabolism of cocaine in the dog and rabbit. J Pharmacol Exp Ther 101:200–204

    PubMed  CAS  Google Scholar 

  • Xiao Y, He J, Gilbert RD, Zhang L (2000) Cocaine induces apoptosis in fetal myocardial cells through a mitochondria-dependent pathway. J Pharmacol Exp Ther 292:8–14

    PubMed  CAS  Google Scholar 

  • Xiao Y, Xiao D, He J, Zhang L (2001) Maternal cocaine administration during pregnancy induces apoptosis in fetal rat heart. J Cardiovasc Pharmacol 37:639–648

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Yang D, Brady M, Parkinson A (1994) Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J Biol Chem 269:29688–29696

    PubMed  CAS  Google Scholar 

  • Yuan C, Acosta D Jr (2000) Effect of cocaine on mitochondrial electron transport chain evaluated in primary cultures of neonatal rat myocardial cells and in isolated mitochondrial preparations. Drug Chem Toxicol 23:339–348

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza A, Diez-Fernandez C, Alvarez AM, Andres D, Cascales M (2001) Mitochondrial involvement in cocaine-treated rat hepatocytes: effect of N-acetylcysteine and deferoxamine. Br J Pharmacol 132:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Xiao Y, He J (1999) Cocaine and apoptosis in myocardial cells. Anat Rec 257:208–216

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Xu G, McLeod HL (2002) Comprehensive evaluation of carboxylesterase-2 expression in normal human tissues using tissue array analysis. Appl Immunohistochem Mol Morphol 10:374–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Fundação para a Ciência e a Tecnologia through grant no. PEst-C/EQB/LA0006/2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria João Valente or Márcia Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valente, M.J., Henrique, R., Vilas-Boas, V. et al. Cocaine-induced kidney toxicity: an in vitro study using primary cultured human proximal tubular epithelial cells. Arch Toxicol 86, 249–261 (2012). https://doi.org/10.1007/s00204-011-0749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0749-3

Keywords

Navigation