Skip to main content

Advertisement

Log in

Endocrine disruptors and bone metabolism

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Bone microenvironment is a complex dynamic equilibrium between osteoclasts and osteoblasts and is modulated by a wide variety of hormones and osteocyte mediators secreted in response to physiological and pathological conditions. The rate of remodeling involves tight coupling and regulation of both cells population and is regulated by a wide variety of hormones and mediators such as parathyroid hormone, prostaglandins, thyroid hormone, sex steroids, etc. It is also well documented that bone formation is easily influenced by the exposure of osteoblasts and osteoclasts to chemical compounds. Currently, humans and wildlife animals are exposed to various environmental xenoestrogens typically at low doses. These compounds, known as endocrine disruptor chemicals (EDCs), can alter the systemic hormonal regulation of the bone remodeling process and the skeletal formation. This review highlights the effects of the EDCs on mammalian bone turnover and development providing a macro and molecular view of their action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeeko A, Li D, Forsyth DS, Casey V, Cooke GM, Barthelemy J, Cyr DG, Trasler JM, Robaire B, Hales BF (2003) Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci 74:407–415

    Article  PubMed  CAS  Google Scholar 

  • Agas D, Marchetti L, Menghi G, Materazzi S, Materazzi G, Capacchietti M, Hurley MM, Sabbieti MG (2008) Anti-apoptotic Bcl-2 enhancing requires FGF-2/FGF receptor 1 binding in mouse osteoblasts. J Cell Physiol 241:145–152

    Article  CAS  Google Scholar 

  • Agas D, Marchetti L, Hurley MM, Sabbieti MG (2012) Prostaglandin F2α: a bone remodeling mediator. J Cell Physiol. doi:10.1002/jcp.24117

    Google Scholar 

  • Agas D, Sabbieti MG, Capacchietti M, Materazzi S, Menghi G, Materazzi G, Hurley MM, Marchetti L (2007) Benzyl butyl phthalate influences actin distribution and cell proliferation in rat Py1a osteoblasts. J Cell Biochem 101:543–551

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Lloret P, Lind PM, Nyberg I, Orberg J, Rodríguez-Navarro AB (2009) Effects of 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) on vertebral bone mineralization and on thyroxin and vitamin D levels in Sprague-Dawley rats. Toxicol Lett 187:63–68

    Article  PubMed  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  • Anway MD, Skinner MK (2006) Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147:S43–S49

    Article  PubMed  CAS  Google Scholar 

  • Barlas N, Aydogan M (2009) Histopathologic effects of maternal 4-tert-octylphenol exposure on liver, kidney and spleen of rats at adulthood. Arch Toxicol 83:341–349

    Article  PubMed  CAS  Google Scholar 

  • Bhat FA, Ramajayam G, Parameswari S, Vignesh RC, Karthikeyan S, Senthilkumar K, Karthikeyan GD, Balasubramanian K, Arunakaran J, Srinivasan N (2012) Di 2-ethyl hexyl phthalate affects differentiation and matrix mineralization of rat calvarial osteoblasts -in vitro. Toxicol In Vitro. doi:10.1016/j.tiv.2012.09.003

    PubMed  Google Scholar 

  • Birnbaum LS (1995) Developmental effects of dioxins and related endocrine disrupting chemicals. Toxicol Lett 82–83:734–750

    Google Scholar 

  • Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM (2006) Environmental chemicals and thyroid function. Eur J Endocrinol 154:599–611

    Article  PubMed  CAS  Google Scholar 

  • Bonefeld-Jørgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 1:69–76

    Article  Google Scholar 

  • Casajuana N, Lacorte S (2004) New methodology for the determination of phthalate esters, bisphenol A bisphenol A diglycidylether and nonylphenol in conmmercial whole milk samples. J Agric Food Chem 52:3702–3707

    Article  PubMed  CAS  Google Scholar 

  • Chau JF, Leong WF, Li B (2009) Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol 24:1593–1606

    PubMed  CAS  Google Scholar 

  • Crews D, Willingham E, Skipper JK (2000) Endocrine disruptors: present issues, future directions. Q Rev Biol 75:243–260

    Article  PubMed  CAS  Google Scholar 

  • Culp SJ, Warbritton AR, Smith BA, Li EE, Beland FA (2000) DNA adduct measurements, cell proliferation and tumor mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene. Carcinogenesis 21:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Den Hond E, Roels HA, Hoppenbrouwers K, Nawrot T, Thijs L, Vandermeulen C, Winneke G, Vanderschueren D, Staessen JA (2002) Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect 110:771–776

    Article  Google Scholar 

  • Ema M, Itami T, Kawasaki H (1992) Embryolethality andnteratogenicity of butyl benzyl phthalate in rats. J Appl Toxicol 12:179–183

    Article  PubMed  CAS  Google Scholar 

  • Ema M, Itami T, Kawasaki H (1993) Teratogenic phase specificity of butyl benzyl phthalate in rats. Toxicology 79:11–19

    Article  PubMed  CAS  Google Scholar 

  • Ema M, Amano H, Ogawa Y (1994) Characterization of the developmental toxicity of di-n-butyl phthalate in rats. Toxicology 86:163–174

    Article  PubMed  CAS  Google Scholar 

  • Finnila MA, Zioupos P, Herlin M, Miettinen HM, Simanainen U, Hakansson H, Tuukkanen J, Viluksela M, Jamsa T (2010) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on bone material properties. J Biomech 43:1097–1103

    Article  PubMed  Google Scholar 

  • Fujita M, Urano T, Horie K, Ikeda K, Tsukui T, Fukuoka H, Tsutsumi O, Ouchi Y, Inoue S (2002) Estrogen activates cyclin-dependent kinases 4 and 6 through induction of cyclin D in rat primary osteoblasts. Biochem Biophys Res Commun 299:222–228

    Article  PubMed  CAS  Google Scholar 

  • Gierthy JF, Silkworth JB, Tassinari M, Stein GS, Lian JB (1994) 2,3,7,8 Tetrachlorodibenzo-p-dioxin inhibits differentiation of normal diploid rat osteoblasts in vitro. J Cell Biochem 54:231–238

    Article  PubMed  CAS  Google Scholar 

  • Giger W, Brunnen PH, Schaffer C (1984) 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225:623–625

    Article  PubMed  CAS  Google Scholar 

  • Goldman LR (1998) Chemicals and children’s environment: what we don’t know about risks. Environ Health Perspect 106:875–880

    PubMed  Google Scholar 

  • Golub MS, Hogrefe CE, Germann SL, Lasley BL, Natarajan K, Tarantal AF (2003) Effects of exogenous estrogenic agents on pubertal growth and reproductive system maturation in female rhesus monkeys. Toxicol Sci 74:103–113

    Article  PubMed  CAS  Google Scholar 

  • Golub MS, Hogrefe CE, Germann SL, Jerome CP (2004) Endocrine disruption in adolescence: immunologic, hematologic, and bone effects in monkeys. Toxicol Sci 82:598–607

    Article  PubMed  CAS  Google Scholar 

  • Gordon SR (2002) Microfilament disruption in a noncycling organized tissue, the corneal endothelium, initiatesmitosis. Exp Cell Res 272:127–134

    Article  PubMed  CAS  Google Scholar 

  • Gray LE Jr, Ostby J, Furr J, Price M, Veeramachaneni DN, Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58:350–365

    Article  PubMed  CAS  Google Scholar 

  • Greenberg TC, Robert E (1982) Epidemiologic evidence for adverse effects of DES exposure during pregnancy. Am Stat 36:268–272

    Google Scholar 

  • Group EF Jr (1986) Environmental fate and aquatic toxicology studies on phthalate esters. Environ Health Perspect 65:337–340

    PubMed  CAS  Google Scholar 

  • Hagiwara H, Sugizaki T, Tsukamoto Y, Senoh E, Goto T, Ishihara Y (2008) Effects of alkylphenols on bone metabolism in vivo and in vitro. Toxicol Lett 181:13–18

    Article  PubMed  CAS  Google Scholar 

  • Hansen LG (1999) The ortho side of PCBs: occurrence and disposition. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Harino H, Fukushima M, Kawai S (2000) Accumulation of butyltin and phenyltin compounds in various fish species. Arch Environ Contam Toxicol 39:13–19

    Article  PubMed  CAS  Google Scholar 

  • Harris CA, Henttu P, Parker MG, Sumpter JP (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105:802–811

    Article  PubMed  CAS  Google Scholar 

  • Herbst AL, Scully RE (1970) Adenocarcinoma of the vagina in adolescence. A report of 7 cases including 6 clear-cell carcinomas (so-called mesonephromas). Cancer 25:745–757

    Article  PubMed  CAS  Google Scholar 

  • Hermsen SA, Larsson S, Arima A, Muneoka A, Ihara T, Sumida H, Fukusato T, Kubota S, Yasuda M, Lind PM (2008) In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhesus monkeys. Toxicology 253:147–152

    Article  PubMed  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Gómez MJ, Malato O, Agüera A, Fernández-Alba AR (2004) Comparative study of analytical methods involving gas chromatography–mass spectrometry after derivatization and gas chromatography–tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. J Chromatogr A 1047:129–135

    Article  PubMed  CAS  Google Scholar 

  • Highman B, Roth SI, Greenman DL (1981) Osseous changes and osteosarcomas in mice continuously fed diets containing diethylstilbestrol or 17β-estradiol. J Natl Cancer Inst 67:653–662

    PubMed  CAS  Google Scholar 

  • Hodsman AB, Hanley DA, Ettinger MP, Bolognese MA, Fox J, Metcalfe AJ, Lindsay R (2003) Efficacy and safety of human parathyroid hormone-(1–84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab 88:5212–5220

    Article  PubMed  CAS  Google Scholar 

  • Hsieh CY, Miaw CL, Hsieh CC, Tseng HC, Yang YH, Yen CH (2009) Effects of chronic 4-n-nonylphenol treatment on aortic vasoconstriction and vasorelaxation in rats. Arch Toxicol 83:941–946

    Article  PubMed  CAS  Google Scholar 

  • Hurley MM, Abreu C, Gronowicz G, Kawaguchi H, Lorenzo J (1994) Expression and regulation of basic fibroblast growth factor mRNA levels in mouse osteoblastic MC3T3-E1 cells. J Biol Chem 269:9392–9396

    PubMed  CAS  Google Scholar 

  • Hurley MM, Lee SK, Raisz LG, Bernecker P, Lorenzo J (1998) Basic fibroblast growth factor induces osteoclast formation in murine bone marrow cultures. Bone 22:309–316

    Article  PubMed  CAS  Google Scholar 

  • Ilvesaro J, Pohjanvirta R, Tuomisto J, Viluksela M, Tuukkanen J (2005) Bone resorption by aryl hydrocarbon receptor-expressing osteoclasts is not disturbed byTCDD in short termcultures. Life Sci 77:1351–1366

    Article  PubMed  CAS  Google Scholar 

  • Jamsa T, Viluksela M, Tuomisto JT, Tuomisto J, Tuukkanen J (2001) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on bone in two rat strains with different aryl hydrocarbon receptor structures. J Bone Miner Res 16:1812–1820

    Article  PubMed  CAS  Google Scholar 

  • Jeffy BD, Chirnomas RB, Romagnolo D (2002) Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen 39:235–244

    Article  PubMed  CAS  Google Scholar 

  • Jobling S, Reynolds T, White R, Parker MG, Sumpter JP (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582–587

    Article  PubMed  CAS  Google Scholar 

  • Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Kaludjerovic J, Ward WE (2008) Diethylstilbesterol has gender-specific effects on weight gain and bone development in mice. J Toxicol Environ Health A 71:1032–1042

    Article  PubMed  CAS  Google Scholar 

  • Kamei S, Miyawaki J, Sakayama K, Yamamoto H, Masuno H (2008) Perinatal and postnatal exposure to 4-tert-octylphenol inhibits cortical bone growth in width at the diaphysis in female mice. Toxicology 252:99–104

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Corsolini S, Focardi S, Tanabe S, Tatsukawa R (1996) Accumulation pattern of butyltin compounds in dolphin, tuna, and shark collected from Italian coastal waters. Arch Environ Contam Toxicol 31:19–23

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Keith TL, Naylor CG, Staples CA, Snyder SA, Giesy JP (2003) Nonylphenol and nonylphenol ethoxylates in fish, sediment, and water from the Kalamazoo river, Michigan. Arch Environ Contam Toxicol 44:77–82

    Article  PubMed  CAS  Google Scholar 

  • KEMI (2001) National Chemicals Inspectorate. Risk assessment: bls(2-ethylhexyl) phthalate. CAS No.: 117-81-7; EINECS No. 204-211-0

  • Khalid O, Baniwal SK, Purcell DJ, Leclerc N, Gabet Y, Stallcup MR, Coetzee GA, Frenkel B (2008) Modulation of Runx2 activity by estrogen receptor-alpha: implications for osteoporosis and breast cancer. Endocrinology 149:5984–5995

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Shin HC, Cha SW, Koh WS, Chung MK, Han SS (2001) Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci 69:2611–2625

    Article  PubMed  CAS  Google Scholar 

  • Kirchner S, Kieu T, Chow C, Casey S, Blumberg B (2010) Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol 24:526–539

    Article  PubMed  CAS  Google Scholar 

  • Korkalainen M, Kallio E, Olkku A, Nelo K, Ilvesaro J, Tuukkanen J, Mahonen A, Viluksela M (2009) Dioxins interfere with differentiation of osteoblasts and osteoclasts. Bone 44:1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Koskela A, Viluksela M, Keinänen M, Tuukkanen J, Korkalainen M (2012) Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts. Toxicol Appl Pharmacol 263:210–217

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor b. Endocrinology 139:4252–4263

    Article  PubMed  CAS  Google Scholar 

  • Kung MH, Yukata K, O’Keefe RJ, Zuscik MJ (2012) Aryl hydrocarbon receptor-mediated impairment of chondrogenesis and fracture healing by cigarette smoke and benzo(a)pyrene. J Cell Physiol 227:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Kwack SJ, Kwon O, Kim HS, Kim SS, Kim SH, Sohn KH, Lee RD, Park CH, Jeung EB, An BS, Park KL (2002) Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo. J Toxicol Environ Health A 65:419–431

    Article  PubMed  CAS  Google Scholar 

  • Lind PM, Wejheden C, Lundberg R, Alvarez-Lloret P, Hermsen SA, Rodriguez-Navarro AB, Larsson S, Rannug A (2009) Short-term exposure to dioxin impairs bone tissue in male rats. Chemosphere 75:680–684

    Article  PubMed  CAS  Google Scholar 

  • Lind PM, Eriksen EF, Sahlin L, Edlund M, Orberg J (1999) Effects of the antiestrogenic environmental pollutant 3,3′,4,4′,5-pentachlorobiphenyl (PCB c126) in rat bone and uterus: diverging effects in ovariectomized and intact animals. Toxicol Appl Pharmacol 154:236–244

    Article  PubMed  CAS  Google Scholar 

  • Lind PM, Larsson S, Oxlund H, Hakansson H, Nyberg K, Eklund T, Orberg J (2000) Change of bone tissue composition and impaired bone strength in rats exposed to 3,3′, 4,4′,5-pentachloro-biphenyl (PCB126). Toxicology 150:43–53

    Article  Google Scholar 

  • Marchetti L, Sabbieti MG, Menghi M, Materazzi S, Hurley MM, Menghi G (2002) Effects of phthalate esters on actin cytoskeleton of Py1a rat osteoblasts. Histol Histopathol 17:1061–1066

    PubMed  CAS  Google Scholar 

  • Marchetti L, Sabbieti MG, Agas D, Menghi M, Materazzi G, Menghi G, Hurley MM (2006) PGF2α increases FGF-2 and FGFR2 trafficking in Py1a rat osteoblasts via clathrin independent and importin β dependent pathway. J Cell Biochem 97:1379–1392

    Article  PubMed  CAS  Google Scholar 

  • Masters RA, Crean BD, Yan W, Moss AG, Ryan PL, Wiley AA, Bagnell CA, Bartol FF (2007) Neonatal porcine endometrial development and epithelial proliferation affected by age and exposure to estrogen and relaxin. Domest Anim Endocrinol 33:335–346

    Article  PubMed  CAS  Google Scholar 

  • Mayer FL, Stalling DL, Johnson JL (1972) Phthalate esters as environmental contaminants. Nature 238:411–413

    Article  PubMed  CAS  Google Scholar 

  • McAnulty PA, Skydsgaard M (2005) Diethylstilbestrol (DES): carcinogenic potential in Xpa−/−, Xpa−/−/p53+/−, and wild-type mice during 9 months’ dietary exposure. Toxicol Pathol 33:609–620

    Article  PubMed  CAS  Google Scholar 

  • McKee RH, Pavkov KL, Trimmer GW, Keller LH, Stump DG (2006) An assessment of the potential developmental and reproductive toxicity of di-isoheptyl phthalate in rodents. Reprod Toxicol 21:241–252

    Article  PubMed  CAS  Google Scholar 

  • Menghi G, Sabbieti MG, Marchetti L, Menghi M, Materazzi S, Hurley MM (2001) Phthalate esters influence FGF-2 translocation in Py1a rat osteoblasts. Eur J Morphol 39:155–162

    PubMed  CAS  Google Scholar 

  • Miettinen HM, Pulkkinen P, Jämsä T, Koistinen J, Simanainen U, Tuomisto J, Tuukkanen J, Viluksela M (2005) Effects of in utero and lactational TCDD exposure on bone development in differentially sensitive rat lines. Toxicol Sci 85:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio S, Newbold RR, Bullock BC, Jefferson WJ, Sutton FG Jr, McLachlan JA, Korach KS (1996) Alterations of maternal estrogen levels during gestation affect the skeleton of female offspring. Endocrinology 137:2118–2125

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio S, Newbold RR, Teti A, Jefferson WJ, Toverud SU, Taranta A, Bullock BC, Suggs CA, Spera G, Korach KS (2000) Transient estrogen exposure of female mice during early development permanently affects osteoclastogenesis in adulthood. Bone 27:47–52

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki J, Kamei S, Sakayama K, Yamamoto H, Masuno H (2008) 4-tert-octylphenol regulates the differentiation of C3H10T1/2 cells into osteoblast and adipocyte lineages. Toxicol Sci 102:82–88

    Article  PubMed  CAS  Google Scholar 

  • Moors S, Diel P, Degen GH (2006) Toxicokinetics of bisphenol A in pregnant DA/Han rats after single i.v. application. Arch Toxicol 80:647–655

    Article  PubMed  CAS  Google Scholar 

  • Naganawa T, Xiao L, Abogunde E, Sobue T, Kalajzic I, Sabbieti M, Agas D, Hurley MM (2006) In vivo and in vitro comparison of the effects of FGF-2 null and haplo-insufficiency on bone formation in mice. Biochem Biophys Res Commun 339:490–498

    Article  PubMed  CAS  Google Scholar 

  • Naganawa T, Xiao L, Coffin JD, Doetschman T, Sabbieti MG, Agas D, Hurley MM (2008) Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem 103:1975–1988

    Article  PubMed  CAS  Google Scholar 

  • Naruse M, Ishihara Y, Miyagawa-Tomita S, Koyama A, Hagiwara H (2002) 3-Methylcholanthrene, which binds to the arylhydrocarbon receptor, inhibits proliferation and differentiation of osteoblasts in vitro and ossification in vivo. Endocrinology 143:3575–3581

    Article  PubMed  CAS  Google Scholar 

  • Naruse M, Otsuka E, Naruse M, Ishihara Y, Miyagawa-Tomita S, Hagiwara H (2004) Inhibition of osteoclast formation by 3-methylcholanthrene, a ligand for arylhydrocarbon receptor: suppression of osteoclast differentiation factor in osteogenic cells. Biochem Pharmacol 67:119–127

    Article  PubMed  CAS  Google Scholar 

  • Nawrot TS, Staessen JA, Den Hond EM, Koppen G, Schoeters G, Fagard R, Thijs L, Winneke G, Roels HA (2002) Host and environmental determinants of polychlorinated aromatic hydrocarbons in serum of adolescents. Environ Health Perspect 110:583–589

    Article  PubMed  CAS  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Ericksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlack BH (2001) Effects of parathyroid hormone (1.34) on fractures and bone mineral density in postmenaupausal women with osteoporosis. N Engl J Med 10:1434–1441

    Article  Google Scholar 

  • Nimrod AC, Benson WH (1996) Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 69:335–364

    Article  Google Scholar 

  • Nishimura N, Nishimura H, Ito T, Miyata C, Izumi K, Fujimaki H, Matsumura F (2009) Dioxin-induced up-regulation of the active form of vitamin D is the main cause for its inhibitory action on osteoblast activities, leading to developmental bone toxicity. Toxicol Appl Pharmacol 236:301–309

    Article  PubMed  CAS  Google Scholar 

  • NTP-CERHR Expert Panel Report (2000) Di,(2-ethylhexyl) phthalate. Center for the Evaluation of Risks to Human Reproduction. National Toxicology Program. NTP-CERHR-DEHP-00

  • Okey AB (2007) An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicol Sci 98:5–38

    Article  PubMed  CAS  Google Scholar 

  • Pelch KE, Carleton SM, Phillips CL, Nagel SC (2012) Developmental exposure to xenoestrogens at low doses alters femur length and tensile strength in adult mice. Biol Reprod 86:69. doi:10.1095/biolreprod.111.096545

    Article  PubMed  CAS  Google Scholar 

  • Penninks AH (1993) The evaluation of data-derived safety factors for bis(tri-n-butyltin)oxide. Food Addit Contam 10:351–361

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Narotsky MG, Elizondo G, Fernandez-Salguero PM, Gonzalez FJ, Abbot BD (1999) Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicol Sci 47:86–92

    Article  PubMed  CAS  Google Scholar 

  • Petersen SL, Krishnan S, Hudgens ED (2006) The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology 147:S33–S42

    Article  PubMed  CAS  Google Scholar 

  • Pohjanvirta R, Vartiainen T, Uusi-Rauva A, Monkkonen J, Tuomisto J (1990) Tissue distribution, metabolisms, and excretion of 14C-TCDD in a TCDD-susceptible and a TCDD resistant rat strain. Pharmacol Toxicol 66:93–100

    Article  PubMed  CAS  Google Scholar 

  • Pohjanvirta R, Tuomisto J (1994) Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms and animal models. Pharmacol Rev 46:483–549

    PubMed  CAS  Google Scholar 

  • Pohjanvirta R, Wong JMY, Li W, Harper PA, Tuomisto J, Okey AB (1998) Point mutation in intron sequence causes altered C-terminal structure in the AH receptor of the most TCDD-resistant rat strain. Mol Pharmacol 54:86–93

    PubMed  CAS  Google Scholar 

  • Pohjanvirta R, Viluksela M, Tuomisto JT, Unkila M, Karasinska J, Franc MA, Holowenko M, Giannone JV, Harper PA, Tuomisto J, Okey AB (1999) Physicochemical differences in the AH receptors of the most TCDD-susceptible and the most TCDD-resistant rat strains. Toxicol Appl Pharmacol 155:82–95

    Article  PubMed  CAS  Google Scholar 

  • Richmond RR, Register TC, Shanker G, Loeser RF (2000) Functional estrogen receptors in adult articular cartilage. Arthritis Rheum 43:2081–2090

    Article  PubMed  CAS  Google Scholar 

  • Rier S, Foster WG (2002) Environmental dioxins and endometriosis. Toxicol Sci 70:161–170

    Article  PubMed  CAS  Google Scholar 

  • Risk and Policy Analysts limited (RPA) (2005) Risk assessment studies on targeted consumer applications of certain organotin compounds. Final Report prepared for and published by the European Commission, DG Enterprise & Industry

  • Rosen V, Wozney JM (2002) Bone morphogenetic proteins. In: Belizikian J, Raisz LG, Rodan G (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 919–928

    Chapter  Google Scholar 

  • Rowas SA, Haddad R, Gawri R, Al Ma’awi AA, Chalifour LE, Antoniou J, Mwale F (2012) Effect of in utero exposure to diethylstilbestrol on lumbar and femoral bone, articular cartilage, and the intervertebral disc in male and female adult mice progeny with and without swimming exercise. Arthritis Res Ther 14:R17

    Article  PubMed  CAS  Google Scholar 

  • Ryan EP, Holz JD, Mulcahey M, Sheu TJ, Gasiewicz TA, Puzas JE (2007) Environmental toxicants may modulate osteoblast differentiation by a mechanism involving the aryl hydrocarbon receptor. J Bone Miner Res 22:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti MG, Marchetti L, Gabrielli MG, Menghi M, Materazzi S, Menghi G, Raisz LG, Hurley MM (2005) Prostaglandins differently regulate FGF-2 and FGF receptor expression and induce nuclear translocation in osteoblasts via MAP kinase. Cell Tissue Res 319:267–278

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti MG, Agas D, Materazzi S, Capacchietti M, Materazzi G, Hurley MM, Menghi G, Marchetti L (2008) Prostaglandin F2alpha involves heparan sulphate sugar chains and FGFRs to modulate osteoblast growth and differentiation. J Cell Physiol 217:48–59

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti MG, Agas D, Xiao L, Marchetti L, Coffin JD, Doetschman T, Hurley MM (2009a) Endogenous FGF-2 is critically important in PTH anabolic effects on bone. J Cell Physiol 219:143–151

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti MG, Agas D, Santoni G, Materazzi S, Menghi G, Marchetti L (2009b) Involvement of p53 in phthalate effects on mouse and rat osteoblasts. J Cell Biochem 107:316–327

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti MG, Agas D, Marchetti L, Santoni G, Amantini C, Xiao L, Menghi G, Hurley MM (2010) Signaling pathways implicated in PGF2alpha effects on Fgf2+/+ and Fgf2−/− osteoblasts. J Cell Physiol 224:465–474

    Article  PubMed  CAS  Google Scholar 

  • Sabbieti MG, Agas D, Palermo F, Mosconi G, Santoni G, Amantini C, Farfariello V, Marchetti L (2011) 4-nonylphenol triggers apoptosis and affects 17-β-estradiol receptors in calvarial osteoblasts. Toxicology 290:334–341

    Article  PubMed  CAS  Google Scholar 

  • Safe S (1990) Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). CRC Crit Rev Toxicol 21:51–88

    Article  CAS  Google Scholar 

  • Saillenfait AM, Gallissot F, Sabaté JP (2009) Differential developmental toxicities of di-n-hexyl phthalate and dicyclohexyl phthalate administered orally to rats. J Appl Toxicol 29:510–521

    Article  PubMed  CAS  Google Scholar 

  • Saillenfait AM, Roudot AC, Gallissot F, Sabaté JP (2011) Prenatal developmental toxicity studies on di-n-heptyl and di-n-octyl phthalates in Sprague-Dawley rats. Reprod Toxicol 32:268–276

    Article  PubMed  CAS  Google Scholar 

  • Salmela E, Alaluusuaa S, Sahlberga C, Lukinmaab P-L (2012) Tributyltin alters osteocalcin, matrix metalloproteinase 20 and dentin sialophosphoprotein gene expression in mineralizing mouse embryonic tooth in vitro. Cells Tissues Organs 195:287–295

    Article  PubMed  CAS  Google Scholar 

  • Salmela E, Sahlberg C, Alaluusua S, Lukinmaa PL (2008) Tributyltin impairs dentin mineralization and enamel formation in cultured mouse embryonic molar teeth. Toxicol Sci 106:214–222

    Article  PubMed  CAS  Google Scholar 

  • Schantz SL, Widholm JJ (2001) Cognitive effects of endocrine-disrupting chemicals in animals. Environ Health Perspect 109:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Sharman M, Read WA, Castle L, Gilbert J (1994) Levels of di-(2-ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit Contam 11:375–385

    Article  PubMed  CAS  Google Scholar 

  • Singh SUN, Casper RF, Fritz PC, Sukhu B, Ganss B, Girard B, Savouret JF, Tenenbaum HC (2000) Inhibition of dioxin effects on bone formation in vitro by a newly described aryl hydrocarbon receptor antagonist, resveratrol. J Endocrinol 167:183–195

    Article  PubMed  CAS  Google Scholar 

  • Snoeij NJ, Penninks AH, Seinen W (1987) Biological activity of organotin compounds—an overview. Environ Res 44:335–353

    Article  PubMed  CAS  Google Scholar 

  • Spelsberg TC, Subramaniam M, Riggs BL, Khosla S (1999) The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 13:819–828

    Article  PubMed  CAS  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  PubMed  CAS  Google Scholar 

  • Swedenborg E, Ruegg J, Makela S, Pongratz I (2009) Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol 43:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20:475–482

    Article  PubMed  CAS  Google Scholar 

  • Tanaka-Kamioka K, Kamioka H, Ris H, Lim SS (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res 13:1555–1568

    Article  PubMed  CAS  Google Scholar 

  • TenHave-Opbroek AAW, Shi X-B, Gumerlock PH (2000) 3-Methylcholanthrene triggers the differentiation of alveolar tumor cells from canine bronchial basal cells and an altered p53 gene promotes their clonal expansion. Carcinogenesis 21:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Titus-Ernstoff L, Troisi R, Hatch EE, Palmer JR, Hyer M, Kaufman R, Adam E, Noller K, Hoover RN (2010) Birth defects in the sons and daughters of women who were exposed in utero to diethylstilbestrol (DES). Int J Androl 2:377–384

    Article  Google Scholar 

  • Toda K, Miyaura C, Okada T, Shizuta Y (2002) Dietary bisphenol A prevents ovarian degeneration and bone loss in female mice lacking the aromatase gene (Cyp19). Eur J Biochem 269:2214–2222

    Article  PubMed  CAS  Google Scholar 

  • Treffers PE, Hanselaar AG, Helmerhorst TJ, Koster ME, van Leeuwen FE (2001) Consequences of diethylstilbestrol during pregnancy; 50 years later still a significant problem. Ned Tijdschr Geneeskd 145:675–680

    PubMed  CAS  Google Scholar 

  • Tsai KS, Yang RS, Liu SH (2004) Benzo[a]pyrene regulates osteoblast proliferation through an estrogen receptor-related cyclooxygenase-2 pathway. Chem Res Toxicol 17:679–684

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Ishihara Y, Miyagawa-Tomita S, Hagiwara H (2004) Inhibition of ossification in vivo and differentiation of osteoblasts in vitro by tributyltin. Biochem Pharmacol 68:739–746

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto J (2001) Are dioxins a health problem in Finland? Duodecim 117:245–246

    PubMed  CAS  Google Scholar 

  • Voronov I, Heersche JN, Casper RF, Tenenbaum HC, Manolson MF (2005) Inhibition of osteoclast differentiation by polycyclic aryl hydrocarbons is dependent on cell density and RANKL concentration. Biochem Pharmacol 70:300–307

    Article  PubMed  CAS  Google Scholar 

  • Voronov I, Li K, Tenenbaum HC, Manolson MF (2008) Benzo[a]pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-kappaB. Biochem Pharmacol 75:2034–2044

    Article  PubMed  CAS  Google Scholar 

  • Ward WE, Piekarz AV (2007) Effect of neonatal exposure to genistein on bone metabolism in mice at adulthood. Pediatr Res 61:438–443

    Article  PubMed  CAS  Google Scholar 

  • Waring RH, Harris RM (2005) Endocrine disrupters: a human risk? Mol Cell Endocrinol 244:2–9

    Article  PubMed  CAS  Google Scholar 

  • Watson CS, Jeng YJ, Kochukov MY (2010) Nongenomic signaling pathways of estrogen toxicity. Toxicol Sci 115:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wejheden C, Brunnberg S, Hanberg A, Lind PM (2006) Osteopontin: a rapid and sensitive response to dioxin exposure in the osteoblastic cell line UMR-106. Biochem Biophys Res Commun 341:116–120

    Article  PubMed  CAS  Google Scholar 

  • Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposures. III: endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147:S56–S69

    Article  PubMed  CAS  Google Scholar 

  • White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    Article  PubMed  CAS  Google Scholar 

  • Windahl SH, Andersson G, Gustafsson JA (2002) Elucidation of estrogen receptor function in bone with the use of mouse models. Trends Endocrinol Metab 13:195–200

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (1996) Levels of PCBs, PCDDs and PCDFs in human milk. Second round of WHOcoordinated exposure study. Environmental Health in Europe No. 3. WHO European Center for Environment and Health, Copenhagen, Denmark

  • World Health Organization (WHO) (2000) Consultation on assessment of the health risk of dioxins; re-evaluation of the tolerable daily intake (TDI): executive summary. Food Addit Contam 17:223–240

    Google Scholar 

  • Yamaguchi A (1995) Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by transforming growth factor-beta superfamily. Semin Cell Biol 6:165–173

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa T, Hasegawa S, Ahn JY, Cha BY, Teruya T, Hagiwara H, Nagai K, Woo JT (2007) Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway. Biochem Biophys Res Commun 355:10–15

    Article  PubMed  CAS  Google Scholar 

  • You L, Sar M, Bartolucci E, Ploch S, Whitt M (2001) Induction of hepatic aromatase by p, p0-DDE in adult male rats. Mol Cell Endocrinol 178:207–214

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Zhang L, Wu D (2003) Estrogenic activity of some environmental chemicals. Wei Sheng Yan Jiu 32:10–12

    PubMed  CAS  Google Scholar 

  • Zacharewski TR, Meek MD, Clemons JH, Wu ZF, Fielden MR, Matthews JB (1998) Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci 46:282–293

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Agas.

Additional information

Dimitrios Agas and Maria Giovanna Sabbieti contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agas, D., Sabbieti, M.G. & Marchetti, L. Endocrine disruptors and bone metabolism. Arch Toxicol 87, 735–751 (2013). https://doi.org/10.1007/s00204-012-0988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0988-y

Keywords

Navigation