Skip to main content

Advertisement

Log in

Experimental models of liver fibrosis

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALD:

Alcohol liver disease

α-SMA:

Alpha smooth muscle actin

BDL:

Bile duct ligation

CCl4 :

Carbon tetrachloride

CFSC:

Cirrhotic fat-storing cells

CYP2E1:

Cytochrome P450 2E1

DEN:

Diethylnitrosamine

DMN:

Dimethylnitrosamine

ECM:

Extracellular matrix

GFP:

Green fluorescent protein

GFAP:

Glial fibrillary acidic protein

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HF:

High-fat

HSCs:

Hepatic stellate cells

hTERT:

Human telomerase reverse transcriptase

IL:

Interleukin

LX:

Lieming Xu

MCD:

Methionine-deficient and choline-deficient

Mdr2:

Multidrug resistance-associated protein 2

MMPs:

Matrix metalloproteinases

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NFSC:

Normal fat-storing cells

PCLS:

Precision-cut liver slices

PDGF:

Platelet-derived growth factor

ROS:

Reactive oxygen species

TIMPs:

Tissue inhibitors metalloproteinases

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TSV40:

Large T-antigen of simian virus 40

References

  • Abdel-Aziz G, Lebeau G, Rescan PY et al (1990) Reversibility of hepatic fibrosis in experimentally induced cholestasis in rat. Am J Pathol 137(6):1333–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abergel A, Sapin V, Dif N et al (2006) Growth arrest and decrease of alpha-SMA and type I collagen expression by palmitic acid in the rat hepatic stellate cell line PAV-1. Dig Dis Sci 51(5):986–995

    Article  CAS  PubMed  Google Scholar 

  • Abu-Absi SF, Hansen LK, Hu WS (2004) Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology 45(3):125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio-Bautista DI, Pérez-Carreón JI, Gutiérrez-Nájera N et al (2013) Comparative proteomic analysis of thiol proteins in the liver after oxidative stress induced by diethylnitrosamine. Biochim Biophys Acta 1834(12):2528–2538

    Article  CAS  PubMed  Google Scholar 

  • Aronson DC, Chamuleau RA, Frederiks WM et al (1993) Reversibility of cholestatic changes following experimental common bile duct obstruction: fact or fantasy? J Hepatol 18(1):85–95

    Article  CAS  PubMed  Google Scholar 

  • Arsov T, Larter CZ, Nolan CJ et al (2006) Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem Biophys Res Commun 342(4):1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Asahina K, Tsai SY, Li P et al (2009) Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49(3):998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba S, Fujii H, Hirose T et al (2004) Commitment of bone marrow cells to hepatic stellate cells in mouse. J Hepatol 40(2):255–260

    Article  PubMed  Google Scholar 

  • Bachem MG, Melchior R, Gressner AM (1989) The role of thrombocytes in liver fibrogenesis: effects of platelet lysate and thrombocyte-derived growth factors on the mitogenic activity and glycosaminoglycan synthesis of cultured rat liver fat storing cells. J Clin Chem Clin Biochem 27(9):555–565

    CAS  PubMed  Google Scholar 

  • Bai Q, An J, Wu X et al (2012) HBV promotes the proliferation of hepatic stellate cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol Med 30(6):1443–1450

    CAS  PubMed  Google Scholar 

  • Bai T, Lian LH, Wu YL et al (2013) Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int Immunopharmacol 15(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Bartley PB, Ramm GA, Jones NK et al (2006) A contributory role for activated hepatic stellate cells in the dynamics of Schistosoma japonicum egg-induced fibrosis. Int J Parasitol 36:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Basu S (2003) Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology 189(1–2):113–127

    Article  CAS  PubMed  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedossa P, Houglum K, Trautwein C et al (1994) Stimulation of collagen alpha 1(I) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis? Hepatology 19(5):1262–1271

    CAS  PubMed  Google Scholar 

  • Beier JI, McClain CJ (2010) Mechanisms and cell signaling in alcoholic liver disease. Biol Chem 391(11):1249–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyon RC, Arthur MJ (2001) Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 21(3):373–384

    Article  CAS  PubMed  Google Scholar 

  • Best CH, Hartroft WS (1949) Liver damage produced by feeding alcohol or sugar and its prevention by choline. Br Med J 2(4635):1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SN, Balis UJ, Yarmush ML et al (1999) Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13(14):1883–1900

    CAS  PubMed  Google Scholar 

  • Bility MT, Zhang L, Washburn ML et al (2012) Generation of a humanized mouse model with both human immune system and liver cells to model hepatitis C virus infection and liver immunopathogenesis. Nat Protoc 7(9):1608–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bility MT, Cheng L, Zhang Z et al (2014) Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 10(3):e1004032

    Article  PubMed  PubMed Central  Google Scholar 

  • Bissell DM, Roulot D, George J (2001) Transforming growth factor beta and the liver. Hepatology 34(5):859–867

    Article  CAS  PubMed  Google Scholar 

  • Blachier M, Leleu H, Peck-Radosavljevic M et al (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58(3):593–608

    Article  PubMed  Google Scholar 

  • Borojevic R, Monteiro AN, Vinhas SA et al (1985) Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers. In Vitro Cell Dev Biol 21(7):382–390

    Article  CAS  PubMed  Google Scholar 

  • Brandon-Warner E, Schrum LW, Schmidt CM et al (2012) Rodent models of alcoholic liver disease: of mice and men. Alcohol 46(8):715–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Breitkopf K, Godoy P, Ciuclan L et al (2006) TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 44(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Brown B, Lindberg K, Reing J et al (2006) The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 12(3):519–526

    Article  CAS  PubMed  Google Scholar 

  • Buchmann A, Bauer-Hofmann R, Mahr J et al (1991) Mutational activation of the c-Ha-ras gene in liver tumors of different rodent strains: correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA 88(3):911–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canbay A, Higuchi H, Bronk SF et al (2002) Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123(4):1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Mak KM, Lieber CS (2006) Leptin enhances alpha1(I) collagen gene expression in LX-2 human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways. J Cell Biochem 97(1):188–197

    Article  CAS  PubMed  Google Scholar 

  • Chang ML, Yeh CT, Chang PY et al (2005) Comparison of murine cirrhosis models induced by hepatotoxin administration and common bile duct ligation. World J Gastroenterol 11(27):4167–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W, Yang M, Song L et al (2014) Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim Biophys Sin (Shanghai) 46(4):291–298

    Article  CAS  Google Scholar 

  • Cheever AW, Duvall RH, Hallack TA et al (1987) Variation of hepatic fibrosis and granuloma size among mouse strains infected with Shistosoma mansoni. Am J Trop Med Hyg 37:85–97

    CAS  PubMed  Google Scholar 

  • Cheever AW, Lenzi JA, Lenzi HL et al (2002) Experimental models of Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 97(7):917–940

    Article  PubMed  Google Scholar 

  • Chen SW, Zhang XR, Wang CZ et al (2008) RNA interference targeting the platelet-derived growth factor receptor beta subunit ameliorates experimental hepatic fibrosis in rats. Liver Int 28(10):1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IS, Chen YC, Chou CH et al (2012) Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. J Sci Food Agric 92(7):1441–1447

    Article  CAS  PubMed  Google Scholar 

  • Chiaramonte MG, Cheever AW, Malley JD et al (2001) Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology 34:273–282

    Article  CAS  PubMed  Google Scholar 

  • Chisari FV, Filippi P, McLachlan A et al (1986) Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J Virol 60(3):880–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu AS, Diaz R, Hui JJ et al (2011) Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53(5):1685–1695

    Article  PubMed  PubMed Central  Google Scholar 

  • Constandinou C, Henderson N, Iredale JP (2005) Modeling liver fibrosis in rodents. Methods Mol Med 117:237–250

    PubMed  Google Scholar 

  • Czaja AJ (2014) Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 20(10):2515–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Date M, Matsuzaki K, Matsushita M et al (2000) Modulation of transforming growth factor beta function in hepatocytes and hepatic stellate cells in rat liver injury. Gut 46(5):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mesquita FC, Bitencourt S, Caberlon E et al (2013) Fructose-1,6-bisphosphate induces phenotypic reversion of activated hepatic stellate cell. Eur J Pharmacol 720(1–3):320–325

    Article  PubMed  CAS  Google Scholar 

  • De Minicis S, Seki E, Uchinami H et al (2007) Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 132(5):1937–1946

    Article  PubMed  CAS  Google Scholar 

  • De Minicis S, Agostinelli L, Rychlicki C et al (2014) HCC development is associated to peripheral insulin resistance in a mouse model of NASH. PLoS ONE 9(5):e97136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeCarli LM, Lieber CS (1967) Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr 91(3):331–336

    CAS  PubMed  Google Scholar 

  • Denda A, Kitayama W, Kishida H et al (2002) Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6 J male mice given a choline-deficient, l-amino acid-defined diet. Jpn J Cancer Res 93(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Domenicali M, Caraceni P, Giannone F et al (2009) A novel model of CCl4-induced cirrhosis with ascites in the mouse. J Hepatol 51(6):991–999

    Article  CAS  PubMed  Google Scholar 

  • Enomoto N, Ikejima K, Bradford B et al (1998) Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology 115(2):443–451

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Huang C, Meng X et al (2014) TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway. Toxicol Appl Pharmacol 280(2):335–344

    Article  CAS  PubMed  Google Scholar 

  • Farrell GC, Mridha AR, Yeh MM et al (2014) Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int 34(7):1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Fausther M, Goree JR, Lavoie EG et al (2015) Establishment and characterization of rat portal myofibroblasts cell lines. PLoS ONE 10(3):e0121161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fickert P, Zollner G, Fuchsbichler A et al (2002) Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 123(4):1238–1251

    Article  CAS  PubMed  Google Scholar 

  • Fickert P, Fuchsbichler A, Wagner M et al (2004) Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127(1):261–274

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Cariers A, Reinehr R et al (2002) Caspase 9-dependent killing of hepatic stellate cells by activated Kupffer cells. Gastroenterology 123(3):845–861

    Article  CAS  PubMed  Google Scholar 

  • Fisher RL, Vickers AE (2013) Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica 43(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Fortuna VA, Trugo LC, Borojevic R (2001) Acyl-CoA: retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT) activation during the lipocyte phenotype induction in hepatic stellate cells. J Nutr Biochem 12(11):610–621

    Article  CAS  PubMed  Google Scholar 

  • French SW (2001) Intragastric ethanol infusion model for cellular and molecular studies of alcoholic liver disease. J Biomed Sci 8(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL, Yamasaki G, Wong L (1994) Modulation of transforming growth factor beta receptors of rat lipocytes during the hepatic wound healing response. Enhanced binding and reduced gene expression accompany cellular activation in culture and in vivo. J Biol Chem 269(14):10551–10558

    CAS  PubMed  Google Scholar 

  • Gaça MD, Zhou X, Issa R et al (2003) Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol 22(3):229–239

    Article  PubMed  CAS  Google Scholar 

  • Ganz M, Csak T, Szabo G (2014) High fat diet feeding results in gender specific steatohepatitis and inflammasome activation. World J Gastroenterol 20(26):8525–8534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21(3):311–335

    Article  CAS  PubMed  Google Scholar 

  • Geerts A, Niki T, Hellemans K et al (1998) Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology 27(2):590–598

    Article  CAS  PubMed  Google Scholar 

  • Geerts AM, Vanheule E, Praet M et al (2008) Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. Int J Exp Pathol 89(4):251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiev P, Jochum W, Heinrich S et al (2008) Characterization of time-related changes after experimental bile duct ligation. Br J Surg 95(5):646–656

    Article  CAS  PubMed  Google Scholar 

  • Ghiassi-Nejad Z, Hernandez-Gea V, Woodrell C et al (2013) Reduced hepatic stellate cell expression of KLF6 tumor suppressor isoforms amplifies fibrosis during acute and chronic rodent liver injury. Hepatology 57(2):786–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraudi PJ, Barbero Becerra VJ, Marin V et al (2014) The importance of the interaction between hepatocyte and hepatic stellate cells in fibrogenesis induced by fatty accumulation. Exp Mol Pathol 98(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Greenwel P, Schwartz M, Rosas M et al (1991) Characterization of fat-storing cell lines derived from normal and CCl4-cirrhotic livers. Differences in the production of interleukin-6. Lab Invest 65(6):644–653

    CAS  PubMed  Google Scholar 

  • Greenwel P, Rubin J, Schwartz M et al (1993) Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest 69(2):210–216

    CAS  PubMed  Google Scholar 

  • Guimarães EL, Franceschi MF, Andrade CM et al (2007) Hepatic stellate cell line modulates lipogenic transcription factors. Liver Int 27(9):1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Guma FCR, Mello TG, Mermelstein CS et al (2001) Intermediate filaments modulation in an in vitro model of the hepatic stellate cell activation or conversion into the lipocyte phenotype. Biochem Cell Biol 79(4):409–417

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Wang H, Zhang C (2007) Establishment of rat precision-cut fibrotic liver slice technique and its application in verapamil metabolism. Clin Exp Pharmacol Physiol 34(5–6):406–413

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Loke J, Zheng F et al (2009) Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49(3):960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn E, Wick G, Pencev D et al (1980) Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut 21(1):63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Sakai T (2011) Animal models for the study of liver fibrosis: new insights from knockout mouse models. Am J Physiol Gastrointest Liver Physiol 300(5):G729–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heindryckx F, Colle I, Van Vlierberghe H (2009) Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 90(4):367–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann J, Gressner AM, Weiskirchen R (2007) Immortal hepatic stellate cell lines: useful tools to study hepatic stellate cell biology and function? J Cell Mol Med 11(4):704–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie S, Kitamura Y, Kawasaki H et al (2000) Inhibitory effects of antisense oligonucleotides on the expression of procollagen type III gene in mouse hepatic stellate cells transformed by simian virus 40. Pathol Int 50(12):937–944

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li X, Wang Y et al (2014) Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Mol Cell Biochem 394(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Ichimura M, Kawase M, Masuzumi M et al. (2014) High-fat and high-cholesterol diet rapidly induces non-alcoholic steatohepatitis with advanced fibrosis in Sprague-Dawley rats. Hepatol Res 45:458–469

    Article  PubMed  CAS  Google Scholar 

  • Iizuka M, Murata T, Hori M et al (2011) Increased contractility of hepatic stellate cells in cirrhosis is mediated by enhanced Ca2+-dependent and Ca2+-sensitization pathways. Am J Physiol Gastrointest Liver Physiol 300(6):G1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Iredale JP, Benyon RC, Pickering J et al (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102(3):538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isono M, Soda M, Inoue A et al (2003) Reverse transformation of hepatic myofibroblast-like cells by TGFbeta1/LAP. Biochem Biophys Res Commun 311(4):959–965

    Article  CAS  PubMed  Google Scholar 

  • Issa R, Williams E, Trim N et al (2001) Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48(4):548–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itagaki H, Shimizu K, Morikawa S et al (2013) Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int J Clin Exp Pathol 6(12):2683–2696

    PubMed  PubMed Central  Google Scholar 

  • Ito M, Suzuki J, Tsujioka S et al (2007) Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res 37(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Iwaisako K, Jiang C, Zhang M et al (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA 111(32):E3297–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JH, Kang KJ, Kim YH et al (2008) Reevaluation of experimental model of hepatic fibrosis induced by hepatotoxic drugs: an easy, applicable, and reproducible model. Transplant Proc 40(8):2700–2703

    Article  CAS  PubMed  Google Scholar 

  • Jarnagin WR, Rockey DC, Koteliansky VE et al (1994) Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 127(6):2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Knopf A, Koefeler H et al (2014) Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta 1842(7):959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Liu J, Waalkes M et al (2004) Changes in the gene expression associated with carbon tetrachloride-induced liver fibrosis persist after cessation of dosing in mice. Toxicol Sci 79(2):404–410

    Article  CAS  PubMed  Google Scholar 

  • Jin N, Deng J, Chadashvili T et al (2010) Carbogen gas-challenge BOLD MR imaging in a rat model of diethylnitrosamine-induced liver fibrosis. Radiology 254(1):129–137

    Article  PubMed  Google Scholar 

  • Karsdal MA, Krarup H, Sand JM et al (2014) Review article: the efficacy of biomarkers in chronic fibroproliferative diseases - early diagnosis and prognosis, with liver fibrosis as an exemplar. Aliment Pharmacol Ther 40(3):233–249

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K, Ushioda R, Ito S et al. (2014) Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J Biol Chem 290(6):3639–3646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keegan A, Martini R, Batey R (1995) Ethanol-related liver injury in the rat: a model of steatosis, inflammation and pericentral fibrosis. J Hepatol 23(5):591–600

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda KK, Todero SL, Shubert KA et al (2001) Malondialdehyde-acetaldehyde-protein adducts increase secretion of chemokines by rat hepatic stellate cells. Alcohol 25(2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Ratziu V, Choi SG et al (1998) Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 273(50):33750–33758

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim KM, Nan JX et al (2003) Induction of apoptosis by tanshinone I via cytochrome c release in activated hepatic stellate cells. Pharmacol Toxicol 92(4):195–200

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Brenner DA (2011) Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol 25(2):305–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisseleva T, Uchinami H, Feirt N et al (2006) Bone marrow-derived fibrocytes participate in the pathogenesis of liver fibrosis. J Hepatol 45:429–438

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Cong M, Paik Y et al (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 109(24):9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura Y, Tanigawa T, Katsumoto T et al (1997) Cell growth and differentiation of a novel mouse Ito (fat-storing) cell line transformed by a temperature-sensitive mutant of simian virus 40. Hepatol 26(2):323–329

    Article  CAS  Google Scholar 

  • Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12(46):7413–7420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause P, Saghatolislam F, Koenig S et al (2009) Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. In Vitro Cell Dev Biol Anim 45(5–6):205–212

    Article  CAS  PubMed  Google Scholar 

  • Krull NB, Zimmermann T, Gressner AM (1993) Spatial and temporal patterns of gene expression for the proteoglycans biglycan and decorin and for transforming growth factor-beta 1 revealed by in situ hybridization during experimentally induced liver fibrosis in the rat. Hepatology 18(3):581–589

    CAS  PubMed  Google Scholar 

  • Larter CZ, Yeh MM (2008) Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 23(11):1635–1648

    Article  PubMed  Google Scholar 

  • Larter CZ, Yeh MM, Van Rooyen DM et al (2009) Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J Gastroenterol Hepatol 24(10):1658–1668

    Article  CAS  PubMed  Google Scholar 

  • Larter CZ, Yeh MM, Haigh WG et al (2013) Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease. Obesity (Silver Spring) 21(6):1189–1199

    Article  CAS  Google Scholar 

  • Lee UE, Friedman SL (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KS, Buck M, Houglum K et al (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96(5):2461–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TF, Lin YL, Huang YT (2011) Kaerophyllin inhibits hepatic stellate cell activation by apoptotic bodies from hepatocytes. Liver Int 31(5):618–629

    Article  CAS  PubMed  Google Scholar 

  • Lee SA, No dY, Kang E et al (2013) Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13(18):3529–3537

    Article  CAS  PubMed  Google Scholar 

  • Lemoinne S, Cadoret A, El Mourabit H et al (2013) Origins and functions of liver myofibroblasts. Biochim Biophys Acta 1832(7):948–954

    Article  CAS  PubMed  Google Scholar 

  • Leo MA, Lieber CS (1983) Hepatic fibrosis after long-term administration of ethanol and moderate vitamin A supplementation in the rat. Hepatology 3(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luo Y, Zhang X et al (2013) Combined taurine, epigallocatechin gallate and genistein therapy reduces HSC-T6 cell proliferation and modulates the expression of fibrogenic factors. Int J Mol Sci 14(10):20543–20554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieber CS (1997) Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 257(1):59–84

    Article  CAS  PubMed  Google Scholar 

  • Liedtke C, Luedde T, Sauerbruch T et al (2013) Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 6(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim MP, Devi LA, Rozenfeld R (2011) Cannabidiol causes activated hepatic stellate cell death through a mechanism of endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2:e170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YW, Huang YT (2014) Inhibitory effect of tanshinone IIA on rat hepatic stellate cells. PLoS ONE 9(7):e103229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez MF, Grahame NJ, Becker HC (2011) Development of ethanol withdrawal-related sensitization and relapse drinking in mice selected for high- or low-ethanol preference. Alcohol Clin Exp Res 35(5):953–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low TY, Leow CK, Salto-Tellez M et al (2004) A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics 4(12):3960–3974

    Article  CAS  PubMed  Google Scholar 

  • MacDonald GA, Bridle KR, Ward PJ et al (2001) Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 16(6):599–606

    Article  CAS  PubMed  Google Scholar 

  • Maher JJ, McGuire RF (1990) Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest 86(5):1641–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcellin P, Gane E, Buti M et al (2013) Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381(9865):468–475

    Article  CAS  PubMed  Google Scholar 

  • Marra F, Gentilini A, Pinzani M et al (1997) Phosphatidylinositol 3-kinase is required for platelet-derived growth factor’s actions on hepatic stellate cells. Gastroenterology 112(4):1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Marra F, DeFranco R, Grappone C et al (1998) Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol 152(2):423–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauad TH, van Nieuwkerk CM, Dingemans KP et al (1994) Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 145(5):1237–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCaffrey AP, Nakai H, Pandey K et al (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21(6):639–644

    Article  CAS  PubMed  Google Scholar 

  • Melhem MF, Rao KN, Kunz HW et al (1989) Genetic control of susceptibility to diethylnitrosamine carcinogenesis in inbred ACP (grc +) and R16 (grc) rats. Cancer Res 49(23):6813–6821

    CAS  PubMed  Google Scholar 

  • Melón LC, Wray KN, Moore EM et al (2013) Sex and age differences in heavy binge drinking and its effects on alcohol responsivity following abstinence. Pharmacol Biochem Behav 104:177–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metten P, Crabbe JC (2005) Alcohol withdrawal severity in inbred mouse (Mus musculus) strains. Behav Neurosci 119(4):911–925

    Article  PubMed  Google Scholar 

  • Meurer SK, Alsamman M, Sahin H et al (2013) Overexpression of endoglin modulates TGF-β1-signalling pathways in a novel immortalized mouse hepatic stellate cell line. PLoS ONE 8(2):e56116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata E, Masuya M, Yoshida S et al (2008) Hematopoietic origin of hepatic stellate cells in the adult liver. Blood 111(4):2427–2435

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Rust C, Roberts PJ et al (1999) Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterol 117(3):669–677

    Article  CAS  Google Scholar 

  • Morita SY, Terada T (2014) Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. Biomed Res Int 2014:954781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morita SY, Tsuda T, Horikami M et al (2013) Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes. J Lipid Res 54(5):1221–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami K, Abe T, Miyazawa M et al (1995) Establishment of a new human cell line, LI90, exhibiting characteristics of hepatic Ito (fat-storing) cells. Lab Invest 72(6):731–739

    CAS  PubMed  Google Scholar 

  • Naik A, Košir R, Rozman D (2013) Genomic aspects of NAFLD pathogenesis. Genomics 102(2):84–95

    Article  CAS  PubMed  Google Scholar 

  • Nakae D, Yoshiji H, Mizumoto Y et al (1992) High incidence of hepatocellular carcinomas induced by a choline deficient l-amino acid defined diet in rats. Cancer Res 52(18):5042–5045

    CAS  PubMed  Google Scholar 

  • Nakamoto Y, Suda T, Momoi T et al (2004) Different procarcinogenic potentials of lymphocyte subsets in a transgenic mouse model of chronic hepatitis B. Cancer Res 64(9):3326–3333

    Article  CAS  PubMed  Google Scholar 

  • Nedredal GI, Elvevold K, Ytrebø LM et al (2007) Significant contribution of liver nonparenchymal cells to metabolism of ammonia and lactate and cocultivation augments the functions of a bioartificial liver. Am J Physiol Gastrointest Liver Physiol 293(1):G75–83

    Article  CAS  PubMed  Google Scholar 

  • Neubauer K, Knittel T, Aurisch S et al (1996) Glial fibrillary acidic protein—a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol 24(6):719–730

    Article  CAS  PubMed  Google Scholar 

  • Niemelä O, Parkkila S, Juvonen RO et al (2000) Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. J Hepatology 33(6):893–901

    Article  Google Scholar 

  • Nieto N (2006) Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 44(6):1487–1501

    Article  CAS  PubMed  Google Scholar 

  • Nieto N, Friedman SL, Cederbaum AI (2002a) Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem 277(12):9853–9864

    Article  CAS  PubMed  Google Scholar 

  • Nieto N, Friedman SL, Cederbaum AI (2002b) Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology 35(1):62–73

    Article  CAS  PubMed  Google Scholar 

  • Niki T, De Bleser PJ, Xu G et al (1996) Comparison of glial fibrillary acidic protein and desmin staining in normal and CCl4-induced fibrotic rat livers. Hepatology 23(6):1538–1545

    Article  CAS  PubMed  Google Scholar 

  • Novo E, Marra F, Zamara E et al (2006) Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells. Gut 55(1):90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364(6440):806–809

    Article  CAS  PubMed  Google Scholar 

  • Oh SW, Kim DH, Ha JR et al (2009) Anti-fibrotic effects of a methylenedioxybenzene compound, CW209292 on dimethylnitrosamine-induced hepatic fibrosis in rats. Biol Pharm Bull 32(8):1364–1370

    Article  CAS  PubMed  Google Scholar 

  • Olinga P, Schuppan D (2013) Precision-cut liver slices: a tool to model the liver ex vivo. J Hepatol 58(6):1252–1253

    Article  PubMed  Google Scholar 

  • Olinga P, Groen K, Hof IH et al (1997) Comparison of five incubation systems for rat liver slices using functional and viability parameters. J Pharmacol Toxicol Methods 38(2):59–69

    Article  CAS  PubMed  Google Scholar 

  • Paik YH, Schwabe RF, Bataller R et al (2003) Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37(5):1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Li DG, Lu HM et al (2005) A new immortalized rat cell line, hepatic stellate cell-PQ, exhibiting characteristics of hepatic stellate cell. Hepatobiliary Pancreat Dis Int 4(2):281–284

    PubMed  Google Scholar 

  • Park KC, Park JH, Jeon JY et al (2014) A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br J Pharmacol 171(21):4820–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen JS, Bendtsen F, Moller S (2015) Management of cirrhotic ascites. Ther Adv Chronic Dis 6(3):124–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellicoro A, Ramachandran P, Iredale JP et al (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro-Margis M, Margis R, Borojevic R (1992) Collagen synthesis in an established liver connective tissue cell line (GRX) during induction of the fat-storing phenotype. Exp Mol Pathol 56(2):108–118

    Article  CAS  PubMed  Google Scholar 

  • Popov Y, Patsenker E, Fickert P et al (2005) Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 43(6):1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Proell V, Mikula M, Fuchs E et al (2005) The plasticity of p19 ARF null hepatic stellate cells and the dynamics of activation. Biochim Biophys Acta 1744(1):76–87

    Article  CAS  PubMed  Google Scholar 

  • Radaeva S, Sun R, Jaruga B et al (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130(2):435–452

    Article  CAS  PubMed  Google Scholar 

  • Ramadori G, Veit T, Schwögler S et al (1990) Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch B Cell Pathol Incl Mol Pathol 59(6):349–357

    Article  CAS  PubMed  Google Scholar 

  • Ramadori P, Weiskirchen R, Trebicka J et al (2015) Mouse models of metabolic liver injury. Lab Anim 49(S1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Ramani K, Tomasi ML (2012) Transcriptional regulation of methionine adenosyltransferase 2A by peroxisome proliferator-activated receptors in rat hepatic stellate cells. Hepatology 55(6):1942–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinella ME, Green RM (2004) The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 40(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Rockey D (1997) The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology 25(1):2–5

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Chung JJ (1995) Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest 95(3):1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockey DC, Weisiger RA (1996) Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 24(1):233–240

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Garay EA, Agüero RM, Pisani G et al (1996) Rat model of mild stenosis of the common bile duct. Res Exp Med (Berl) 196(2):105–116

    Article  Google Scholar 

  • Rojkind M, Giambrone MA, Biempica L (1979) Collagen types in normal and cirrhotic liver. Gastroenterology 76(4):710–719

    CAS  PubMed  Google Scholar 

  • Sahai A, Malladi P, Pan X et al (2004) Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol 287(5):G1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Saile B, Knittel T, Matthes N et al (1997) CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am J Pathol 151(5):1265–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salguero Palacios R, Roderfeld M, Hemmann S et al (2008) Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab Invest 88(11):1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Pérez Y, Carrasco-Legleu C, García-Cuellar C et al (2005) Oxidative stress in carcinogenesis. Correlation between lipid peroxidation and induction of preneoplastic lesions in rat hepatocarcinogenesis. Cancer Lett 217(1):25–32

    Article  PubMed  CAS  Google Scholar 

  • Sauvant P, Abergel A, Partier A et al (2002a) Treatment of the rat hepatic stellate cell line, PAV-1, by retinol and palmitic acid leads to a convenient model to study retinoids metabolism. Biol Cell 94(6):401–408

    Article  CAS  PubMed  Google Scholar 

  • Sauvant P, Sapin V, Abergel A, Schmidt CK et al (2002b) PAV-1, a new rat hepatic stellate cell line converts retinol into retinoic acid, a process altered by ethanol. Int J Biochem Cell Biol 34(8):1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Gräff A, Krüger S, Bochard F et al (1991) Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 138(5):1233–1242

    PubMed  PubMed Central  Google Scholar 

  • Schnabl B, Choi YH, Olsen JC et al (2002) Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab Invest 82(3):323–333

    Article  CAS  PubMed  Google Scholar 

  • Scholten D, Trebicka J, Liedtke C et al (2015) The carbon tetrachloride model in mice. Lab Anim 49(S1):4–11

    Article  CAS  PubMed  Google Scholar 

  • Seki E, De Minicis S, Gwak GY et al (2009) CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest 119(7):1858–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Khalili K, Nguyen GC (2014) Non-invasive diagnosis of advanced fibrosis and cirrhosis. World J Gastroenterol 20(45):16820–16830

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Wakil AE, Rockey DC (1997) Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci USA 94(20):10663–10668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibamoto T, Kamikado C, Koyama S (2008) Increased sinusoidal resistance is responsible for the basal state and endothelin-induced venoconstriction in perfused cirrhotic rat liver. Pflugers Arch 456(3):467–477

    Article  CAS  PubMed  Google Scholar 

  • Shibata N, Watanabe T, Okitsu T et al (2003) Establishment of an immortalized human hepatic stellate cell line to develop antifibrotic therapies. Cell Transplant 12(5):499–507

    Article  PubMed  Google Scholar 

  • Shinohara M, Ji C, Kaplowitz N (2010) Differences in betaine-homocysteine methyltransferase expression, endoplasmic reticulum stress response, and liver injury between alcohol-fed mice and rats. Hepatology 51(3):796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitia G, Aiolfi R, Di Lucia P et al (2012) Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc Natl Acad Sci USA 109(32):E2165–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GP (2013) Animal models for the study of human disease. Elsevier, China

    Google Scholar 

  • Starkel P, Leclercq IA (2011) Animal models for the study of hepatic fibrosis. Best Pract Res Clin Gastroenterol 25:319–333

    Article  CAS  PubMed  Google Scholar 

  • Stefano JT, Cogliati B, Santos F et al (2011) S-Nitroso-N-acetylcysteine induces de-differentiation of activated hepatic stellate cells and promotes antifibrotic effects in vitro. Nitric Oxide 25(3):360–365

    Article  CAS  PubMed  Google Scholar 

  • Stensgaard AS, Utzinger J, Vounatsou P et al (2013) Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter? Acta Trop 128(2):378–390

    Article  PubMed  Google Scholar 

  • Sung CK, She H, Xiong S et al (2004) Tumor necrosis factor-alpha inhibits peroxisome proliferator-activated receptor gamma activity at a posttranslational level in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 286(5):G722–729

    Article  CAS  PubMed  Google Scholar 

  • Svegliati-Baroni G, Ridolfi F, Di Sario A et al (1999) Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology 29(6):1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Svegliati-Baroni G, Ridolfi F, Hannivoort R et al (2005) Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology 128(4):1042–1055

    Article  CAS  PubMed  Google Scholar 

  • Tacke F, Weiskirchen R (2012) Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 6(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Taimr P, Higuchi H, Kocova E et al (2003) Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Yoshioka M, Yamanaka N et al (2010) Reversible conversion of epithelial and mesenchymal phenotypes in SV40 large T antigen-immortalized rat liver cell lines. Cell Biol Int Rep 17(1):e00001

    Article  Google Scholar 

  • Tang X, Yang J, Li J (2009) Accelerative effect of leflunomide on recovery from hepatic fibrosis involves TRAIL-mediated hepatic stellate cell apoptosis. Life Sci 84(15–16):552–557

    Article  CAS  PubMed  Google Scholar 

  • Taura K, Miura K, Iwaisako K et al (2010) Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51(3):1027–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas RJ, Bhandari R, Barrett DA et al (2005) The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs 181(2):67–79

    Article  PubMed  Google Scholar 

  • Thrall KD, Vucelick ME, Gies RA et al (2000) Comparative metabolism of carbon tetrachloride in rats, mice, and hamsters using gas uptake and PBPK modeling. J Toxicol Environ Health A 60(8):531–548

    Article  CAS  PubMed  Google Scholar 

  • Tosello-Trampont AC, Landes SG, Nguyen V et al (2012) Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem 287(48):40161–40172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troeger JS, Mederacke I, Gwak GY et al (2012) Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterol 143(4):1073–1083

    Article  CAS  Google Scholar 

  • Tsujimura K, Ichinose F, Hara T et al (2008) The inhalation exposure of carbon tetrachloride promote rat liver carcinogenesis in a medium-term liver bioassay. Toxicol Lett 176(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Reidelberger RD, French SW et al (1984) Long-term cannulation model for blood sampling and intragastric infusion in the rat. Am J Physiol 247(3):R595–599

    CAS  PubMed  Google Scholar 

  • van Agthoven M, Metselaar HJ, Tilanus HW et al (2001) A comparison of the costs and effects of liver transplantation for acute and for chronic liver failure. Transpl Int 14(2):87–94

    Article  PubMed  Google Scholar 

  • van de Bovenkamp M, Groothuis GM, Meijer DK et al (2006) Precision-cut fibrotic rat liver slices as a new model to test the effects of anti-fibrotic drugs in vitro. J Hepatol 45(5):696–703

    Article  PubMed  CAS  Google Scholar 

  • Van Rooyen DM, Larter CZ, Haigh WG et al (2011) Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141(4):1393–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verna L, Whysner J, Williams GM (1996) N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 71(1–2):57–81

    Article  CAS  PubMed  Google Scholar 

  • Viñas O, Bataller R, Sancho-Bru P et al (2003) Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38(4):919–929

    Article  PubMed  Google Scholar 

  • Vogel S, Piantedosi R, Frank J et al (2000) An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res 41(6):882–893

    CAS  PubMed  Google Scholar 

  • Walkin L, Herrick SE, Summers A et al (2013) The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis Tissue Repair 6(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace MC, Hamesch K, Lunova M et al (2015) Standard operating procedures in experimental liver research: thioacetamide model in mice and rats. Lab Anim 49(S1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu T, Cong M et al (2009) Expression of extracellular matrix genes in cultured hepatic oval cells: an origin of hepatic stellate cells through transforming growth factor beta? Liver Int 29(4):575–584

    Article  CAS  PubMed  Google Scholar 

  • Weber LW, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33(2):105–136

    Article  CAS  PubMed  Google Scholar 

  • Weill FX, Blazejewski S, Blanc JF et al (1997) Characterization of a new human liver myofibroblast cell line: transcriptional regulation of plasminogen activator inhibitor type I by transforming growth factor beta 1. Lab Invest 77(1):63–70

    CAS  PubMed  Google Scholar 

  • Weiskirchen R, Gressner AM (2005) Isolation and culture of hepatic stellate cells. Methods Mol Med 117:99–113

    CAS  PubMed  Google Scholar 

  • Weiskirchen R, Weimer J, Meurer SK et al (2013) Genetic characteristics of the human hepatic stellate cell line LX-2. PLoS ONE 8(10):e75692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen F, Chang S, Toh YC et al (2008) Development of dual-compartment perfusion bioreactor for serial coculture of hepatocytes and stellate cells in poly(lactic-co-glycolic acid)-collagen scaffolds. J Biomed Mater Res B Appl Biomater 87(1):154–162

    Article  CAS  PubMed  Google Scholar 

  • Westra IM, Oosterhuis D, Groothuis GM et al (2014a) Precision-cut liver slices as a model for the early onset of liver fibrosis to test antifibrotic drugs. Toxicol Appl Pharmacol 274(2):328–338

    Article  CAS  PubMed  Google Scholar 

  • Westra IM, Oosterhuis D, Groothuis GM et al (2014b) The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices. PLoS ONE 9(4):e95462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wirz W, Antoine M, Tag CG et al (2008) Hepatic stellate cells display a functional vascular smooth muscle cell phenotype in a three-dimensional co-culture model with endothelial cells. Differentiation 76(7):784–794

    Article  CAS  PubMed  Google Scholar 

  • Wouters K, van Gorp PJ, Bieghs V et al (2008) Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48(2):474–486

    Article  PubMed  Google Scholar 

  • Wu CF, Lin YL, Huang YT (2013) Hepatitis C virus core protein stimulates fibrogenesis in hepatic stellate cells involving the obese receptor. J Cell Biochem 114(3):541–550

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Cheever AW (1995) Cytokine regulation of granuoma formation in shistosomiasis. Curr Opin Immunol 7:505–511

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Hui AY, Albanis E et al (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54(1):142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Zeisberg M, Mosterman B et al (2003) Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 124(1):147–159

    Article  CAS  PubMed  Google Scholar 

  • Yang KL, Chang WT, Chuang CC et al (2008) Antagonizing TGF-beta induced liver fibrosis by a retinoic acid derivative through regulation of ROS and calcium influx. Biochem Biophys Res Commun 365(3):484–489

    Article  CAS  PubMed  Google Scholar 

  • Yin MF, Lian LH, Piao DM et al (2007) Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model. World J Gastroenterol 13(8):1214–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Matsuzaki K (2012) Differential Regulation of TGF-β/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries. Front Physiol 3:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Ogata H, Kamio M et al (2004) SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis. J Exp Med 199(12):1701–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Matsuzaki K, Mori S et al (2005) Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 166(4):1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisberg M, Yang C, Martino M et al (2007) Fibroblasts derived from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shen J, Man K et al (2014) CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol 61(6):1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang D, Gao W et al (2015) Lack of IL-17 signaling decreases liver fibrosis in murine shistosomiasis japonica. Int Immunol. doi:10.1093/intimm/dxv017

    Google Scholar 

  • Zhen MC, Huang XH, Wang Q et al (2006) Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacol Sin 27(12):1600–1607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grants of the University Hospital of the Vrije Universiteit Brussel, Belgium (Willy Gepts Fonds UZ-VUB), the Fund for Scientific Research, Flanders (FWO grants G009514N and G010214N), the European Research Council (ERC Starting Grant 335476), the University of São Paulo, Brazil (USP), and the Foundation for Research Support of the State of São Paulo (FAPESP SPEC Grant 2013/50420-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Vinken.

Additional information

Sara Crespo Yanguas and Bruno Cogliati have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo Yanguas, S., Cogliati, B., Willebrords, J. et al. Experimental models of liver fibrosis. Arch Toxicol 90, 1025–1048 (2016). https://doi.org/10.1007/s00204-015-1543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1543-4

Keywords

Navigation