Skip to main content

Advertisement

Log in

Melanin and neuromelanin binding of drugs and chemicals: toxicological implications

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Melanin is a polyanionic pigment that colors, e.g., the hair, skin and eyes. The pigment neuromelanin is closely related to melanin and is mainly produced in specific neurons of the substantia nigra. Certain drugs and chemicals bind to melanin/neuromelanin and are retained in pigment cells for long periods. This specific retention is thought to protect the cells but also to serve as a depot that slowly releases accumulated compounds and may cause toxicity in the eye and skin. Moreover, neuromelanin and compounds with high neuromelanin affinity have been suggested to be implicated in the development of adverse drug reactions in the central nervous system (CNS) as well as in the etiology of Parkinson’s disease (PD). Epidemiologic studies implicate the exposure to pesticides, metals, solvents and other chemicals as risk factors for PD. Neuromelanin interacts with several of these toxicants which may play a significant part in both the initiation and the progression of neurodegeneration. MPTP/MPP+ that has been casually linked with parkinsonism has high affinity for neuromelanin, and the induced dopaminergic denervation correlates with the neuromelanin content in the cells. Recent studies have also reported that neuromelanin may interact with α-synuclein as well as activate microglia and dendritic cells. This review aims to provide an overview of melanin binding of drugs and other compounds, and possible toxicological implications, with particular focus on the CNS and its potential involvement in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Solano T, Melanins: Skin pigments and much more—types, structural models, biological functions, and formation routes. New Journal of Science. 2014, Article ID 498276)

Similar content being viewed by others

References

  • Aubry AF (2002) Applications of affinity chromatography to the study of drug-melanin binding interactions. J Chromatogr B Analyt Technol Biomed Life Sci 768:67–74

    Article  CAS  PubMed  Google Scholar 

  • Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F (2014) Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases–a mechanistic approach. Toxicol Lett 230:85–103

    Article  CAS  PubMed  Google Scholar 

  • Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61:387–389

    Article  CAS  PubMed  Google Scholar 

  • Barden H, Levine S (1983) Histochemical observations on rodent brain melanin. Brain Res Bull 10:847–851

    Article  CAS  PubMed  Google Scholar 

  • Bertoni JM, Arlette JP, Fernandez HH et al (2010) Increased melanoma risk in Parkinson disease: a prospective clinicopathological study. Arch Neurol 67:347–352

    Article  PubMed  Google Scholar 

  • Borenstein AR, Mortimer JA, Schellenberg GD, Galasko D (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72:473

    Article  PubMed  Google Scholar 

  • Boulton M, Rozanowska M, Rozanowski B (2001) Retinal photodamage. J Photochem Photobiol, B 64:144–161

    Article  CAS  Google Scholar 

  • Bradley WG, Banack SA, Cox PA (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72:473–474

    Article  PubMed  Google Scholar 

  • Campbell RJ, Steele JC, Cox TA, Loerzel AJ, Belli M, Belli DD, Kurland LT (1993) Pathologic findings in the retinal pigment epitheliopathy associated with the amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. Ophthalmology 100:37–42

    Article  CAS  PubMed  Google Scholar 

  • Cebrian C, Zucca FA, Mauri P et al (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat commun 5:3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppedè F, Mancuso M, Siciliano G, Migliore L, Murri L (2006) Genes and the environment in neurodegeneration. Biosci Rep 26:341–367

    Article  PubMed  CAS  Google Scholar 

  • Cox TA, McDarby JV, Lavine L, Steele JC, Calne DB (1989) A retinopathy on Guam with high prevalence in Lytico-Bodig. Ophthalmology 96:1731–1735

    Article  CAS  PubMed  Google Scholar 

  • Cox, PA., Davis, DA, Mash, DC, Metcalf, JS Banack, SA (2016) Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. In: Proceedings of the biological sciences/The Royal Society,vol 283

  • Cruz-Aguado R, Shaw CA (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72:474

    PubMed  Google Scholar 

  • D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP + binds to neuromelanin. Science 231:987–989

    Article  PubMed  Google Scholar 

  • D’Amato RJ, Alexander GM, Schwartzman RJ, Kitt CA, Price DL, Snyder SH (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327:324–326

    Article  PubMed  Google Scholar 

  • Dayhaw-Barker P (2002) Retinal pigment epithelium melanin and ocular toxicity. Int J Toxicol 21:451–454

    Article  CAS  PubMed  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  • Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, Remião F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71

    Article  CAS  PubMed  Google Scholar 

  • Double KL, Ben-Shachar D, Youdim MB, Zecca L, Riederer P, Gerlach M (2002) Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 24:621–628

    Article  CAS  PubMed  Google Scholar 

  • Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66:489–494

    Article  CAS  PubMed  Google Scholar 

  • Double KL, Rowe DB, Carew-Jones FM et al (2009) Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol 217:297–301

    Article  CAS  PubMed  Google Scholar 

  • Duffy P, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus Caeruleus in Parkinson’s Disease. J Neuropathol Exp Neurol 24:398–414

    Article  Google Scholar 

  • Engelen M, Vanna R, Bellei C, Zucca FA, Wakamatsu K, Monzani E, Ito S, Casella L, Zecca L (2012) Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS ONE 7:e48490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Fedorow H, Halliday GM, Rickert CH, Gerlach M, Riederer P, Double KL (2006) Evidence for specific phases in the development of human neuromelanin. Neurobiol Aging 27:506–512

    Article  CAS  PubMed  Google Scholar 

  • Fenichel GM, Bazelon M (1968) Studies on neuromelanin. II. Melanin in the brainstems of infants and children. Neurology 18:817–820

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact 188:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlong M, Tanner CM, Goldman SM et al (2015) Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson’s disease. Environ Int 75:144–150

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Simon KC, Han J, Schwarzschild MA, Ascherio A (2009) Family history of melanoma and Parkinson disease risk. Neurology 73:1286–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A, Javoy-Agid F, Agid Y (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. Immunocytochemical localization and relationships. J Neurol Sci 58:247–267

    Article  CAS  PubMed  Google Scholar 

  • Greggio E, Bergantino E, Carter D et al (2005) Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson’s disease. J Neurochem 93:246–256

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Ophof A, Broe M et al (2005) Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain 128:2654–2664

    Article  PubMed  Google Scholar 

  • Halliday GM, Fedorow H, Rickert CH, Gerlach M, Riederer P, Double KL (2006) Evidence for specific phases in the development of human neuromelanin. J Neural Transm 113:721–728

    Article  CAS  PubMed  Google Scholar 

  • Hernandez EH (2009) Pigmentation genes link Parkinson’s disease to melanoma, opening a window on both etiologies. Med Hypotheses 72:280–284

    Article  CAS  Google Scholar 

  • Herrero MT, Hirsch EC, Kastner A, Ruberg M, Luquin MR, Laguna J, Javoy-Agid F, Obeso JA, Agid Y (1993) Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? Neuroscience 56:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348

    Article  CAS  PubMed  Google Scholar 

  • Hu DN, Simon JD, Sarna T (2008) Role of ocular melanin in ophthalmic physiology and pathology. Photochem Photobiol 84:639–644

    Article  CAS  PubMed  Google Scholar 

  • Huang LZ, Parameswaran N, Bordia T, Michael McIntosh J, Quik M (2009) Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. J Neurochem 109:826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa A, Takahashi H (1998) Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol 245(Suppl 3):4–9

    Article  Google Scholar 

  • Ito S (2003) A chemist’s view of melanogenesis. Pigment Cell Res 16:230–236

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2008) Chemistry of mixed melanogenesis–pivotal roles of dopaquinone. Photochem Photobiol 84:582–592

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA, Kienzl E, Rumpelmaier G, Paulus W, Riederer P, Stachelberger H, Youdim MB, Ben-Shachar D (1993) Iron and ferritin in substantia nigra in Parkinson’s disease. Adv Neurol 60:267–272

    CAS  PubMed  Google Scholar 

  • Jimbow K (1995) Current update and trends in melanin pigmentation and melanin biology. Keio J Med 44:9–18

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O, Lindquist NG (2013) Melanin affinity and its possible role in neurodegeneration. J Neural Transm 120:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O, Berg C, Brittebo EB, Lindquist NG (2009) Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells–a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma Res 22:120–130

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O, Berg AL, Hanrieder J, Arnerup G, Lindstrom AK, Brittebo EB (2015) Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA. Arch Toxicol 89:423–436

    Article  CAS  PubMed  Google Scholar 

  • Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Kellner U, Kellner S, Weinitz S (2008) Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc Ophthalmol 116:119–127

    Article  PubMed  Google Scholar 

  • Kintz P (2012) Value of the concept of minimal detectable dosage in human hair. Forensic Sci Int 218:28–30

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Shimohama S, Akaike A, Taniguchi T (2000) The parkinsonian models: invertebrates to mammals. Jpn J Pharmacol 84:237–243

    Article  CAS  PubMed  Google Scholar 

  • Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96

    Article  CAS  PubMed  Google Scholar 

  • Koutsilieri E, Lutz MB, Scheller C (2013) Autoimmunity, dendritic cells and relevance for Parkinson’s disease. J Neural Transm 120:75–81

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  • Larsson BS (1993) Interaction between chemicals and melanin. Pigment Cell Res 6:127–133

    Article  CAS  PubMed  Google Scholar 

  • Larsson B, Tjalve H (1979) Studies on the mechanism of drug-binding to melanin. Biochem Pharmacol 28:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Leblanc B, Jezequel S, Davies T, Hanton G, Taradach C (1998) Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol RTP 28:124–132

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang J, Zhao P, Li S, Zhang R, Zhang X, Liu D, Zhang B (2012) Neuromelanin enhances the toxicity of alpha-synuclein in SK-N-SH cells. J Neural Transm 119:685–691

    Article  CAS  PubMed  Google Scholar 

  • Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC (2004) Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Comp Neurol 473:97–106

    Article  CAS  PubMed  Google Scholar 

  • Lindquist NG (1972) Accumulation in vitro of 35 S-chlorpromazine in the neuromelanin of human substantia nigra and locus coeruleus. Arch internationales de pharmacodynamie et de therapie 200:190–195

    CAS  Google Scholar 

  • Lindquist NG (1973) Accumulation of drugs on melanin. Acta Radiol Diagn (Stockh) 325:1–92

    CAS  Google Scholar 

  • Lindquist NG, Lyden-Sokolowski A, Larsson BS (1986) Accumulation of a parkinsonism-inducing neurotoxin in melanin-bearing neurons: autoradiographic studies on 3H-MPTP. Acta pharmacologica et toxicologica 59:161–164

    Article  CAS  PubMed  Google Scholar 

  • Lindquist NG, Larsson BS, Lyden-Sokolowski A (1987) Neuromelanin and its possible protective and destructive properties. Pigment Cell Res 1:133–136

    Article  CAS  PubMed  Google Scholar 

  • Lindquist NG, Larsson BS, Lyden-Sokolowski A (1988) Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin. Neurosci Lett 93:1–6

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Gao X, Lu Y, Chen H (2011) Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 76:2002–2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu S, Miao Z, Jiang H, Deng Z, Hong X, Cheng Z (2013) A novel aliphatic 18F-labeled probe for PET imaging of melanoma. Mol Pharm 10:3384–3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyden A, Larsson B, Lindquist NG (1982) Studies on the melanin affinity of haloperidol. Arch Int Pharmacodyn Ther 259:230–243

    CAS  PubMed  Google Scholar 

  • Lyden A, Bondesson U, Larsson BS, Lindquist NG (1983) Melanin affinity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, an inducer of chronic parkinsonism in humans. Acta Pharmacol Toxicol (Copenh) 53:429–432

    Article  CAS  Google Scholar 

  • Ma QL, Chan P, Yoshii M, Ueda K (2003) Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis 5:139–148

    CAS  PubMed  Google Scholar 

  • Manzanares JA, Rimpela AK, Urtti A (2016) Interpretation of ocular melanin drug binding assays. alternatives to the model of multiple classes of independent sites. Mol Pharm 13:1251–1257

    Article  CAS  PubMed  Google Scholar 

  • Mars U, Larsson BS (1999) Pheomelanin as a binding site for drugs and chemicals. Pigment Cell Res 12:266–274

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD (1961) Pigmentation in the nucleus substantiae nigrae of mammals. J Anat 95:256–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marszall MP, Bucinski A, Gorynski K, Proszowska A, Kaliszan R (2011) Magnetic beads method for determination of binding of drugs to melanin. J Chromatogr A 1218:229–236

    Article  CAS  PubMed  Google Scholar 

  • Matsuo Y, Kamitani T (2010) Parkinson’s disease-related protein, alpha-synuclein, in malignant melanoma. PLoS ONE 5:e10481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCormack AL, Di Monte DA, Delfani K, Irwin I, DeLanney LE, Langston WJ, Janson AM (2004) Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 471:387–395

    Article  PubMed  Google Scholar 

  • Mecklenburg L, Schraermeyer U (2007) An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol 35:252–267

    Article  CAS  PubMed  Google Scholar 

  • Michal Piotr M, Anna P, Adam B, Roman K (2013) Affinity chromatography method for determination of binding of drugs to melanin and evaluation of side effect potential of antipsychotic agents. Curr Pharm Anal 9:131–138

    Article  Google Scholar 

  • Oberlander U, Pletinckx K, Dohler A et al (2011) Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci 12:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostergren A, Annas A, Skog K, Lindquist NG, Brittebo EB (2004) Long-term retention of neurotoxic beta-carbolines in brain neuromelanin. J Neural Transm 111:141–157

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Zhu J, Hwu WJ, Jankovic J (2012) The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells. PLoS ONE 7:e45183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Potsch L, Skopp G, Rippin G (1997) A comparison of 3H-cocaine binding on melanin granules and human hair in vitro. Int J Legal Med 110:55–62

    Article  CAS  PubMed  Google Scholar 

  • Potts AM (1962a) The concentration of phenothiazines in the eye of experimental animals. Invest Ophthalmol 1:522–530

    CAS  PubMed  Google Scholar 

  • Potts AM (1962b) Uveal pigment and phenothiazine compounds. Trans Am Ophthalmol Soc 60:517–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potts AM (1964a) Further studies concerning the accumulation of polycyclic compounds on uveal melanin. Invest Ophthalmol 3:399–404

    CAS  PubMed  Google Scholar 

  • Potts AM (1964b) The reaction of uveal pigment in vitro with polycyclic compounds. Invest Ophthalmol 3:405–416

    CAS  PubMed  Google Scholar 

  • Prota G (1992) Melanins and melanogenesis. Academic Press Inc, San Diego

    Google Scholar 

  • Reed D, Labarthe D, Chen KM, Stallones R (1987) A cohort study of amyotrophic lateral sclerosis and parkinsonism-dementia on Guam and Rota. Am J Epidemiol 125:92–100

    CAS  PubMed  Google Scholar 

  • Reilly J, Williams SL, Forster CJ, Kansara V, End P, Serrano-Wu MH (2015) High-throughput melanin-binding affinity and in silico methods to aid in the prediction of drug exposure in ocular tissue. J Pharm Sci 104:3997–4001

    Article  CAS  PubMed  Google Scholar 

  • Rozanowska M, Sarna T, Land EJ, Truscott TG (1999) Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26:518–525

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Bookaman MM, Wainer I, Patil PN (1994) Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J Ocul Pharmacol 10:217–239

    Article  CAS  PubMed  Google Scholar 

  • Salminen L, Urtti A (1984) Disposition of ophthalmic timolol in treated and untreated rabbit eyes. A multiple and single dose study. Exp Eye Res 38:203–206

    Article  CAS  PubMed  Google Scholar 

  • Sanes DH, Reh TA, Harris WA (2006) Development of the nervous system. Academic Press, Elsevier

    Google Scholar 

  • Sarna T (1992) Properties and function of the ocular melanin–a photobiophysical view. J Photochem Photobiol, B 12:215–258

    Article  CAS  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108:1263–1282

    Article  CAS  PubMed  Google Scholar 

  • Schroeder RL, Gerber JP (2014) Chloroquine and hydroxychloroquine binding to melanin: some possible consequences for pathologies. Toxicol Rep 1:963–968

    Article  CAS  Google Scholar 

  • Segura-Aguilar J, Paris I, Munoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Akao Y et al (2004) Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm 111:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Simon JD, Peles D, Wakamatsu K, Ito S (2009) Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 22:563–579

    Article  CAS  PubMed  Google Scholar 

  • Solano F (2014) Melanins: skin pigments and much more-types, structural models, biological functions, and formation routes. New J Sci 2014:28

    Article  CAS  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:517–522

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Palmer V, Kisby G (2009) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 72:474–475

    PubMed  Google Scholar 

  • Steele JC, McGeer PL (2008) The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70:1984–1990

    Article  PubMed  Google Scholar 

  • Sulzer D, Bogulavsky J, Larsen KE et al (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon R, Jibson MD (2002) Extrapyramidal side effects of antipsychotic treatment: scope of problem and impact on outcome. Ann Clin Psychiatry 14:123–129

    Article  PubMed  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281:341–346

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–R194

    Article  CAS  PubMed  Google Scholar 

  • Tribl F, Arzberger T, Riederer P, Gerlach M (2007) Tyrosinase is not detected in human catecholaminergic neurons by immunohistochemistry and Western blot analysis. J Neural Transm Suppl 72:51–55

    Article  CAS  PubMed  Google Scholar 

  • Tzekov R (2005) Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol 110:111–120

    Article  PubMed  Google Scholar 

  • Viceconte N, Burguillos MA, Herrera AJ, De Pablos RM, Joseph B, Venero JL (2015) Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. J Neuroinflamm 12:5

    Article  CAS  Google Scholar 

  • Wakamatsu K, Fujikawa K, Zucca FA, Zecca L, Ito S (2003) The structure of neuromelanin as studied by chemical degradative methods. J Neurochem 86:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Hu DN, McCormick SA, Ito S (2008) Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res 21:97–105

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Tabuchi K, Ojika M, Zucca FA, Zecca L, Ito S (2015) Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. J Neurochem 135:768–776

    Article  CAS  PubMed  Google Scholar 

  • Whiting MG (1963) Toxicity of cycads. Econ Bot 17:271–302

    Article  CAS  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502

    CAS  PubMed  Google Scholar 

  • Wirdefeldt K, Gatz M, Bakaysa SL et al (2008) Complete ascertainment of Parkinson disease in the Swedish twin registry. Neurobiol Aging 29:1765–1773

    Article  PubMed  Google Scholar 

  • Xu S, Chan P (2015) Interaction between Neuromelanin and Alpha-Synuclein in Parkinson’s Disease. Biomolecules 5:1122–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan Q, Xu SL, Lu DH, Yu S, Zhou M, Ueda K, Cui YQ, Zhang BY, Chan P (2011) Increased expression of alpha-synuclein in aged human brain associated with neuromelanin accumulation. J Neural Transm 118:1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Bellei C, Costi P et al (2008a) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci USA 105:17567–17572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecca L, Wilms H, Geick S et al (2008b) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, Faust R, Qian SY, Miller DS, Chignell CF, Wilson B, Jackson-Lewis V, Przedborski S, Joset D, Loike J, Hong JS, Sulzer D, Zecca L (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson's disease. Neurotox Res 19(1):63-72. doi:10.1007/s12640-009-9140-z

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zecca L, Wilson B, Ren HW, Wang YJ, Wang XM, Hong JS (2013) Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death. Front Biosci (Elite Ed) 5:1–11

    Article  Google Scholar 

  • Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Huang W, Cheng Z (2015) Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Adv Mater 27:5063–5069

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Schaack J, Zawada WM, Freed CR (2002) Overexpression of human alpha-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res 926:42–50

    Article  CAS  PubMed  Google Scholar 

  • Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2015) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol. doi:10.1016/j.pneurobio.2015.09.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Karlsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlsson, O., Lindquist, N.G. Melanin and neuromelanin binding of drugs and chemicals: toxicological implications. Arch Toxicol 90, 1883–1891 (2016). https://doi.org/10.1007/s00204-016-1757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1757-0

Keywords

Navigation