Skip to main content

Advertisement

Log in

Next-generation sequencing approaches for the study of genome and epigenome toxicity induced by sulfur mustard

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Sulfur mustard (SM) is an extensive nucleophilic and alkylating agent that targets different tissues. The genotoxic property of SM is the most threatening effect, because it is associated with detrimental inflammations and susceptibility to several kinds of cancer. Moreover, SM causes a wide variety of adverse effects on DNA which result in accumulation of DNA adducts, multiple mutations, aneuploidies, and epigenetic aberrations in the genome. However, these adverse effects are still not known well, possibly because no valid biomarkers have been developed for detecting them. The advent of next-generation sequencing (NGS) has provided opportunities for the characterization of these alterations with a higher level of molecular detail and cost-effectivity. The present review introduces NGS approaches for the detection of SM-induced DNA adducts, mutations, chromosomal structural variation, and epigenetic aberrations, and also comparing and contrasting them with regard to which might be most advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel HJ, Duncavage EJ (2013) Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet 206:432–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abolghasemi H et al (2010) Childhood physical abnormalities following paternal exposure to sulfur mustard gas in Iran: a case–control study. Confl Health 4:13

    PubMed  PubMed Central  Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011a) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkan C, Sajjadian S, Eichler EE (2011b) Limitations of next-generation genome sequence assembly. Nat Methods 8:61

    CAS  PubMed  Google Scholar 

  • Ari Ş, Arikan M (2016) Next-generation sequencing: advantages, disadvantages, and future. In: Plant omics: trends and applications. Springer, Berlin, pp 109–135

    Google Scholar 

  • Auerbach C (1949) Chemical mutagenesis. Biol Rev 24:355–391

    CAS  PubMed  Google Scholar 

  • Balali-Mood M, Hefazi M (2006) Comparison of early and late toxic effects of sulfur mustard in Iranian veterans. Basic Clin Pharmacol Toxicol 99:273–282

    CAS  PubMed  Google Scholar 

  • Ball MP et al (2009) Targeted and genome-scale methylomics reveals gene body signatures in human cell lines. Nat Biotechnol 27:361–368. https://doi.org/10.1038/nbt.1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batal M et al (2013) Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin. Toxicol Appl Pharmacol 273:644–650

    CAS  PubMed  Google Scholar 

  • Batal M, Boudry I, Mouret S, Cléry-Barraud C, Wartelle J, Bérard I, Douki T (2014) DNA damage in internal organs after cutaneous exposure to sulphur mustard. Toxicol Appl Pharmacol 278:39–44

    CAS  PubMed  Google Scholar 

  • Behravan E, Moallem SA, Khateri S, Maraghi E, Jowsey P, Blain PG, Balali-Mood M (2013) Deoxyribonucleic acid damage in Iranian veterans 25 years after wartime exposure to sulfur mustard. J Res Med Sci 18:239

    PubMed  PubMed Central  Google Scholar 

  • Bennett RA, Behrens E, Zinn A, Duncheon C, Lamkin TJ (2014) Mustard gas surrogate, 2-chloroethyl ethylsulfide (2-CEES), induces centrosome amplification and aneuploidy in human and mouse cells. Cell Biol Toxicol 30:195–205

    CAS  PubMed  Google Scholar 

  • Boulware S, Fields T, McIvor E, Powell KL, Abel EL, Vasquez KM, MacLeod MC (2012) 2, 6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog. Toxicol Appl Pharmacol 263:203–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner AL et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan DS, Ransom M, Adane B, York K, Hesselberth JR (2014) High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res 24:1534–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buermans H, Den Dunnen J (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta (BBA) Mol Basis Dis 1842:1932–1941

    CAS  Google Scholar 

  • Choi M et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci 106:19096–19101

    Google Scholar 

  • Colaneri A, Staffa N, Fargo DC, Gao Y, Wang T, Peddada SD, Birnbaumer L (2011) Expanded methyl-sensitive cut counting reveals hypomethylation as an epigenetic state that highlights functional sequences of the genome. Proc Natl Acad Sci 108:9715–9720

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499

    CAS  PubMed  Google Scholar 

  • Dewey FE et al (2014) Clinical interpretation and implications of whole-genome sequencing. JAMA 311:1035–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Taylor MS, Jackson AP, Reijns MA (2015) Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Nat Protoc 10:1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dugac AV, Ruzic A, Samarzija M, Badovinac S, Kehler T, Jakopovic M (2015) Persistent endothelial dysfunction turns the frequent exacerbator COPD from respiratory disorder into a progressive pulmonary and systemic vascular disease. Med Hypotheses 84:155–158

    Google Scholar 

  • Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. In: Seminars in reproductive medicine. Vol 5. Thieme Medical Publishers, Stuttgart, pp 351–357

    Google Scholar 

  • Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    CAS  PubMed  Google Scholar 

  • Emison ES, Smith WJ (1996) Cytometric analysis of DNA damage in cultured human epithelial cells after exposure to sulfur mustard. J Am Coll Toxicol 15:S9–S18

    CAS  Google Scholar 

  • Fidder A, Moes GW, Scheffer AG, van der Schans GP, Baan RA, de Jong LP, Benschop HP (1994) Synthesis, characterization, and quantitation of the major adducts formed between sulfur mustard and DNA of calf thymus and human blood. Chem Res Toxicol 7:199–204

    CAS  PubMed  Google Scholar 

  • Fouse SD, Nagarajan RP, Costello JF (2010) Genome-scale DNA methylation analysis. Epigenomics 2:105–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox M, Scott D (1980) The genetic toxicology of nitrogen and sulphur mustard. Mutat Res Rev Genet Toxicol 75:131–168

    CAS  Google Scholar 

  • Fraineau S, Palii CG, Allan DS, Brand M (2015) Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J 282:1605–1629

    CAS  PubMed  Google Scholar 

  • Gerhauser C, Heilmann K, Pudenz M (2015) Genome-wide DNA methylation profiling in dietary intervention studies: a user’s perspective. Curr Pharmacol Rep 1:31–45

    CAS  Google Scholar 

  • Ghabili K, Agutter PS, Ghanei M, Ansarin K, Shoja MM (2010) Mustard gas toxicity: the acute and chronic pathological effects. J Appl Toxicol 30:627–643

    CAS  PubMed  Google Scholar 

  • Ghanei M, Vosoghi AA (2002) An epidemiologic study to screen for chronic myelocytic leukemia in war victims exposed to mustard gas. Environ Health Perspect 110:519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson P, Brink R, Stahmann M (1950) The mutagenic action of mustard gas on zea mays. J Hered 41:232–238

    CAS  PubMed  Google Scholar 

  • Gilbert RM, Rowland S, Davison CL, Papirmeister B (1975) Involvement of separate pathways in the repair of mutational and lethal lesions induced by a monofunctional sulfur mustard mutation research/fundamental and molecular. Mech Mutagen 28:257–275

    CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    CAS  PubMed  Google Scholar 

  • Gregus Z, Klaassen CD (2001) Mechanisms of toxicity Casarett and Doull’s toxicology: the basic science of poisons Vol. 6, McGraw-Hill, New York, pp 35–82

    Google Scholar 

  • Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    CAS  PubMed  Google Scholar 

  • Haque F, Li J, Wu H-C, Liang X-J, Guo P (2013) Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of. DNA Nano Today 8:56–74

    CAS  PubMed  Google Scholar 

  • Hart J, Verbruggen M, Maletta G (2017) 1.7. Actual use of chemical weapons in Syria for the Policy and Operations Evaluations Department of the Dutch Ministry of Foreign Affairs:79

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing. DNA Genom 107:1–8

    CAS  Google Scholar 

  • Hosseini-khalili A et al (2009) Mustard gas exposure and carcinogenesis of lung. Mutat Res Genet Toxicol Environ Mutagen 678:1–6

    CAS  Google Scholar 

  • Hu J, Adar S, Selby CP, Lieb JD, Sancar A (2015) Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev 29:948–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Lieb JD, Sancar A, Adar S (2016) Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proc Natl Acad Sci 113:11507–11512

    Google Scholar 

  • Hu J, Adebali O, Adar S, Sancar A (2017) Dynamic maps of UV damage formation and repair for the human genome. Proc Natl Acad Sci 114(26):6758–6763

    Google Scholar 

  • Imani S, Panahi Y, Salimian J, Fu J, Ghanei M (2015) Epigenetic: a missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iran J Basic Med Sci 18:723

    PubMed  PubMed Central  Google Scholar 

  • Ives SJ et al (2014) Vascular dysfunction and chronic obstructive. Pulm Dis Hypertens 63:459–467

    CAS  Google Scholar 

  • Jafari M, Nateghi M, Rabbani A (2010) Interaction of sulfur mustard with rat liver salt fractionated chromatin. Int J Biol Macromol 46:104–108

    CAS  PubMed  Google Scholar 

  • Jost P, Svobodová H, Zemankova S, Stetina R (2010) The relationship of DNA Cross-links induced with sulphur mustard (SM) in human and Chinese hamster cell lines to the cell viability. Toxicol Lett 196:S172

    Google Scholar 

  • Jowsey PA, Williams FM, Blain PG (2010) The role of homologous recombination in the cellular response to sulphur mustard. Toxicol Lett 197:12–18

    CAS  PubMed  Google Scholar 

  • Jowsey PA, Williams FM, Blain PG (2012) DNA damage responses in cells exposed to sulphur mustard. Toxicol Lett 209:1–10

    CAS  PubMed  Google Scholar 

  • Jung M, Kadam S, Xiong W, Rauch TA, Jin S-G, Pfeifer GP (2015) MIRA-seq for DNA methylation analysis of CpG Islands. Epigenomics 7:695–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadalayil L et al (2014) Exome sequence read depth methods for identifying copy number changes. Brief Bioinform 16:380–392

    PubMed  Google Scholar 

  • Kehe K, Szinicz L (2005) Medical aspects of sulphur mustard poisoning. Toxicology 214:198–209

    CAS  PubMed  Google Scholar 

  • Khan F, Niaz K, Hassan FI, Abdollahi M (2017) An evidence-based review of the genotoxic and reproductive effects of sulfur mustard. Arch Toxicol 91:1143–1156

    CAS  PubMed  Google Scholar 

  • Kircher M, Brendel M (1983) DNA alkylation by mustard gas in yeast strains of different repair capacity. Chem Biol Interact 44:27–39

    CAS  PubMed  Google Scholar 

  • Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korbel JO et al (2007) Paired-end mapping reveals extensive structural variation in the. human genome. Science 318:420–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz A, Yaren H, Topal T, Oter S (2006) Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch Toxicol 80:662–670

    CAS  PubMed  Google Scholar 

  • Korkmaz A, Tan D-X, Reiter R (2008a) Acute and delayed sulfur mustard toxicity; novel mechanisms and future studies. Interdiscip Toxicol 1:22–26

    PubMed  PubMed Central  Google Scholar 

  • Korkmaz A et al (2008b) Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results. Interdiscip Toxicol 1:236–241

    PubMed  PubMed Central  Google Scholar 

  • Korkmaz A, Topal T, Aykutlug O, Ates K, Uysal B, Kalkan F, Oter S (2016) Revealing the epigenetic mechanisms on the pathogenesis of lung damage caused by chemical warfare agent mustard analogue mechlorethamine. Toxicol Lett 258:S253

    Google Scholar 

  • Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology 5:3

    PubMed Central  Google Scholar 

  • Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191

    CAS  PubMed  Google Scholar 

  • Laskin JD et al (2010) Oxidants and antioxidants in sulfur mustard-induced injury. Ann N Y Acad Sci 1203:92–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawley P (1989) Mutagens as carcinogens: development of current concepts. Mutat Res Fundam Mol Mechanisms Mutagen 213:3–25

    CAS  Google Scholar 

  • Le Scouarnec S, Gribble S (2012) Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity 108:75

    PubMed  Google Scholar 

  • Lemaire M-A, Schwartz A, Rahmouni AR, Leng M (1991) Interstrand cross-links are preferentially formed at the d (GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. Proc Natl Acad Sci 88:1982–1985

    Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    CAS  PubMed  Google Scholar 

  • Lewis CJ, Mardaryev AN, Sharov AA, Fessing MY, Botchkarev VA (2014) The epigenetic regulation of wound healing. Adv Wound Care 3:468–475

    Google Scholar 

  • Li W, Hu J, Adebali O, Adar S, Yang Y, Chiou Y-Y, Sancar A (2017) Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo [a] pyrene. Proc Natl Acad Sci 114:6752–6757

    Google Scholar 

  • Liu-Lee VW, Heddle JA, Arlett CF, Broughton B (1984) Genetic effects of specific DNA lesions in mammalian cells. Mutat Res Fundam Mol Mech Mutagen 127:139–147

    CAS  Google Scholar 

  • Ludlum DB, Tong WP, Mehta JR, Kirk MC, Papimeister B (1984) Formation of O6-ethylthioethyldeoxyguanosine from the reaction of chloroethyl ethyl sulfide with deoxyguanosine. Cancer Res 44:5698–5701

    CAS  PubMed  Google Scholar 

  • Ludlum DB, Kent S, Mehta JR (1986) Formation of O 6-ethylthioethylguanine in DNA by reaction with the sulfur mustard, chloroethyl sulfide, and its apparent lack of repair by O 6-alkylguanine-DNA alkyltransferase. Carcinogenesis 7:1203–1206

    CAS  PubMed  Google Scholar 

  • Ludlum DB, Austin-Ritchie P, Hagopian M, Niu T-Q, Yu D (1994) Detection of sulfur mustard-induced DNA modifications. Chem Biol Interact 91:39–49

    CAS  PubMed  Google Scholar 

  • Mahdieh N, Rabbani B (2013) An overview of mutation detection methods in genetic disorders. Iran J Pediatr 23:375

    PubMed  PubMed Central  Google Scholar 

  • Mansour Razavi S, Salamati P, Saghafinia M, Abdollahi M (2012) A review on delayed toxic effects of sulfur mustard in Iranian veterans DARU. J Pharm Sci 20:51

    Google Scholar 

  • Mao P, Smerdon MJ, Roberts SA, Wyrick JJ (2016) Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proc Natl Acad Sci 113:9057–9062

    Google Scholar 

  • Mao P, Brown AJ, Malc EP, Mieczkowski PA, Smerdon MJ, Roberts SA, Wyrick JJ (2017) Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity. Genome Res 27:1674–1684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzese DM, Hoon DS (2015) Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Rev Mol Diagn 15:647–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maslov AY, Quispe-Tintaya W, Gorbacheva T, White RR, Vijg J (2015) High-throughput sequencing in mutation detection: a new generation of genotoxicity tests? Mutat Res Fundam Mol Mech Mutagen 776:136–143

    CAS  Google Scholar 

  • Mason-Suares H, Landry L, Lebo MS (2016) Detecting copy number variation via next generation technology. Curr Genet Med Rep 4:74–85

    Google Scholar 

  • Masser DR et al (2016) Bisulfite oligonucleotide-capture sequencing for targeted base-and strand-specific absolute 5-methylcytosine quantitation. Age 38:49

    PubMed  PubMed Central  Google Scholar 

  • Masta A, Gray PJ, Phillips DR (1996) Effect of sulphur mustard on the initiation and elongation of transcription. Carcinogenesis 17:525–532

    CAS  PubMed  Google Scholar 

  • Matijasevic Z, Volkert MR (2007) Base excision repair sensitizes cells to sulfur mustard and chloroethyl ethyl sulfide. DNA Repair 6:733–741

    CAS  PubMed  Google Scholar 

  • Matijasevic Z, Precopio ML, Snyder JE, Ludlum DB (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis 22:661–664

    CAS  PubMed  Google Scholar 

  • Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102:873–887

    CAS  PubMed  Google Scholar 

  • Meaburn E, Schulz R (2012) Next generation sequencing in epigenetics: insights and challenges. In: Seminars in cell & developmental biology. Vol 2. Elsevier, Amsterdam, pp 192–199

    Google Scholar 

  • Meier B et al (2014) C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 24:1624–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 32:177

    PubMed  PubMed Central  Google Scholar 

  • Merk O, Speit G (1999) Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity. Environ Mol Mutagen 33:167–172

    CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31

    CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    CAS  PubMed  Google Scholar 

  • Ning B et al (2014) Toxicogenomics and cancer susceptibility: advances with next-generation sequencing. J Environ Sci Health Part C 32:121–158

    CAS  Google Scholar 

  • Olkhov-Mitsel E, Bapat B (2012) Strategies for discovery and validation of methylated and hydroxymethylated. DNA biomarkers. Cancer Med 1:237–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ordulu Z et al (2014) Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature. Am J Hum Genet 94:695–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panahi Y, Fattahi A, Nejabati HR, Abroon S, Latifi Z, Akbarzadeh A, Ghasemnejad T (2018) DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard. Environ Toxicol Pharmacol 58:230–236

    Google Scholar 

  • Park PJ (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson CL, Laniel M-A (2004) Histones and histone modifications. Curr Biol 14:R546–R551

    CAS  PubMed  Google Scholar 

  • Povirk LF, Shuker DE (1994) DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res Rev Genet Toxicol 318:205–226

    CAS  Google Scholar 

  • Rauch TA, Pfeifer GP (2010) DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods 52:213–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razavi SM, Ghanei M, Salamati P, Safiabadi M (2013) Long-term effects of mustard gas on respiratory system of Iranian veterans after Iraq–Iran war: a review Chinese. J Traumatol 16:163–168

    Google Scholar 

  • Reis-Filho JS (2009) Next-generation sequencing. Breast Cancer Res 11:S12

    PubMed  PubMed Central  Google Scholar 

  • Rowell M, Kehe K, Balszuweit F, Thiermann H (2009) The chronic effects of sulfur. mustard exposure. Toxicology 263:9–11

    CAS  PubMed  Google Scholar 

  • Savage JR, Breckon G (1981) Differential effects of sulphur mustard on S-phase cells of primary fibroblast cultures from Syrian hamsters. Mutat Res Fundam Mol Mech Mutagen 84:375–387

    CAS  Google Scholar 

  • Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large genomes using second-generation sequencing. Genome Res 20:1165–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott D, Fox M, Fox B (1974a) Proceedings: the relationship between cell survival, chromosome aberrations and DNA repair in tumour cell lines of differential sensitivity to X-rays and sulphur mustard. Br J Cancer 29:99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott D, Fox M, Fox BW (1974b) The relationship between chromosomal aberrations, survival and DNA repair in tumour cell lines of differential sensitivity to X-rays and sulphur mustard. Mutat Res Fundam Mol Mech Mutagen 22:207–221

    CAS  Google Scholar 

  • Shah SU (2012) Importance of Genotoxicity & S2A guidelines for genotoxicity testing for pharmaceuticals IOSR. J Pharm Biol Sci 1:43–54

    Google Scholar 

  • Shahin S, Cullinane C, Gray PJ (2001) Mitochondrial and nuclear DNA damage induced by sulphur mustard in keratinocytes. Chem Biol Interact 138:231–245

    CAS  PubMed  Google Scholar 

  • Shakarjian MP et al (2009) Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 114:5–19

    PubMed  PubMed Central  Google Scholar 

  • Shakil FA, Kuramoto A, Yamakido M, Nishimoto Y, Kamada N (1993) Cytogenetic abnormalities of hematopoietic tissue in retired workers of the Ohkunojima poison gas factory. Hiroshima J Med Sci 42:159–165

    CAS  PubMed  Google Scholar 

  • Shelby MD (1988) The genetic toxicity of human carcinogens and its implications. Mutat Res Genet Toxicol 204:3–15

    CAS  Google Scholar 

  • Shu X, Xiong X, Song J, He C, Yi C (2016) Base-resolution analysis of cisplatin–DNA adducts at the genome scale. Angew Chem Int Ed 55:14246–14249

    CAS  Google Scholar 

  • Shukla P, Mishra P (2010) A quantum chemical study of reactions of DNA bases with sulphur mustard: a chemical warfare agent. Theor Chem Acc 125:269–278

    CAS  Google Scholar 

  • Simons T et al (2017) Sulfur mustard-induced epigenetic modifications over time—a pilot study. Toxicol Lett 293:45–50

    Google Scholar 

  • Sloan DB, Broz AK, Sharbrough J, Wu Z (2018) Detecting rare mutations and DNA damage with sequencing-based methods. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.02.009

    Article  PubMed  Google Scholar 

  • Soozangar N, Sadeghi MR, Jeddi F, Somi MH, Shirmohamadi M, Samadi N (2018) Comparison of genome-wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 233:3968–3981

    CAS  PubMed  Google Scholar 

  • Soto J, Rodriguez-Antolin C, Vallespín E, de Castro Carpeño J, de Caceres II (2016) The impact of next-generation sequencing on the DNA methylation–based translational cancer research. Transl Res 169:1–18. e11

    CAS  PubMed  Google Scholar 

  • Steinritz D, Emmler J, Hintz M, Worek F, Kreppel H, Szinicz L, Kehe K (2007) Apoptosis in sulfur mustard treated A549 cell cultures. Life Sci 80:2199–2201

    CAS  PubMed  Google Scholar 

  • Steinritz D et al (2016) Epigenetic modulations in early endothelial cells and DNA hypermethylation in human skin after sulfur mustard exposure. Toxicol Lett 244:95–102

    CAS  PubMed  Google Scholar 

  • Stetina R, Jilkova M, Svobodova H (2010) The induction of inter-strand DNA cross-links in different tissues of rats after percutaneous application of sulphur mustard (SM). Toxicol Lett 196:S162

    Google Scholar 

  • Steward D, Sass E, Fritz L, Sasser L (1989) Toxicology Studies on Lewisite and Sulfur Mustard Agents: Mutagenicity of Sulfur Mustard in the Salmonella Histidine Reversion Assay. Pacific Northwest Labs Richland WA

  • Stewart D Mutagenicity study of sulfur mustard in the Salmonella histidine reversion test. In: Environmental Mutagenesis, 1987. Wiley-Liss Div John Wiley & Sons Inc 605 Third Ave, New York, NY 10158-0012, pp 103–104

  • Szikriszt B et al (2016) A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol 17:99

    PubMed  PubMed Central  Google Scholar 

  • Takeshima Y et al (1994) p53 mutations in lung cancers from Japanese mustards gas workers. Carcinogenesis 15:2075–2079

    CAS  PubMed  Google Scholar 

  • Toyota M et al (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59:2307–2312

    CAS  PubMed  Google Scholar 

  • Venitt S (1968) Interstrand cross-links in the DNA of Escherichia coli B/r and Bs—1 and their removal by the resistant strain. Biochem Biophys Res Commun 31:355–360

    CAS  PubMed  Google Scholar 

  • Vijayan V, Pathak U, Meshram GP (2014) Mutagenicity and antimutagenicity studies of DRDE-07 and its analogs against sulfur mustard in the in vitro Ames Salmonella/microsome assay. Mutat Res Genet Toxicol Environ Mutagen 773:39–45

    CAS  PubMed  Google Scholar 

  • Walker I (1971) Intrastrand bifunctional alkylation of DNA in mammalian cells treated with mustard gas. Can J Biochem 49:332–336

    CAS  PubMed  Google Scholar 

  • Wang W (2015) Detect copy number variations from read-depth of high-throughput sequencing data. The University of North Carolina at Chapel Hill

  • Wheeler GP, Alexander JA (1969) Effects of nitrogen mustard and cyclophosphamide upon the synthesis of DNA in vivo and in cell-free preparations. Cancer Res 29:98–109

    CAS  PubMed  Google Scholar 

  • Wilson D, Sofinowski T, McNeill D (2003) Repair mechanisms for oxidative DNA damage. Front Biosci 8:d963-981

    Google Scholar 

  • Wulf H, Aasted A, Darre E, Niebuhr E (1985) Sister chromatid exchanges in fishermen exposed to leaking mustard gas shells. Lancet 325:690–691

    Google Scholar 

  • Xuan J, Yu Y, Qing T, Guo L, Shi L (2013) Next-generation sequencing in the clinic: promises and challenges. Cancer Lett 340:284–295

    CAS  PubMed  Google Scholar 

  • Yanagida J et al (1988) Somatic mutation in peripheral lymphocytes of former workers at the Okunojima poison gas factory. Cancer Sci 79:1276–1283

    CAS  Google Scholar 

  • Zahir MH, Nouri DM, Jalilian N, Naderimanesh H, Bidaky S, Rostamzadeh J, Rezwani H (2002) Immunohaematological and cytogenetical studies on human population exposed to sulfur mustard. J Sci I R Iran 13:303–309

    Google Scholar 

  • Zhang ZD, Du J, Lam H, Abyzov A, Urban AE, Snyder M, Gerstein M (2011) Identification of genomic indels and structural variations using split reads. BMC Genom 12:375

    Google Scholar 

Download references

Acknowledgements

We would like to dedicate this article to the victims of chemical weapon-exposed countries.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abolfazl Akbarzadeh or Tohid Ghasemnejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahi, Y., Fattahi, A., Zarei, F. et al. Next-generation sequencing approaches for the study of genome and epigenome toxicity induced by sulfur mustard. Arch Toxicol 92, 3443–3457 (2018). https://doi.org/10.1007/s00204-018-2294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2294-9

Keywords

Navigation