Skip to main content
Log in

A Vanishing Viscosity Approach to Quasistatic Evolution in Plasticity with Softening

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We deal with quasistatic evolution problems in plasticity with softening, in the framework of small strain associative elastoplasticity. The presence of a nonconvex term due to the softening phenomenon requires a nontrivial extension of the variational framework for rate-independent problems to the case of a nonconvex energy functional. We argue that, in this case, the use of global minimizers in the corresponding incremental problems is not justified from the mechanical point of view. Thus, we analyse a different selection criterion for the solutions of the quasistatic evolution problem, based on a viscous approximation. This leads to a generalized formulation in terms of Young measures, developed in the first part of the paper. In the second part we apply our approach to some concrete examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.J., Bouchitté G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4, 129–147 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam/London; American Elsevier, New York, 1973

  3. Carstensen C., Hackl K., Mielke A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. Roy. Soc. Lond. Ser. A 458, 299–317 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ciarlet Ph.G.: Mathematical Elasticity. Vol. I. Three-dimensional Elasticity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  5. Dal Maso G., DeSimone A., Mora M.G.: Quasistatic evolution problems for linearly elastic - perfectly plastic materials. Arch. Ration. Mech. Anal. 180, 237–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dal Maso G., DeSimone A., Mora M.G., Morini M.: Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2, 1–36 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Dal Maso, G., DeSimone, A., Mora, M.G., Morini, M.: Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media, in press (2008)

  8. DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108, 667–689 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Efendiev M., Mielke A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13, 151–167 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. Translation of Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1972

  11. Fonseca I., Müller S., Pedregal P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Francfort G., Mielke A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han W., Reddy B.D.: Plasticity. Mathematical Theory and Numerical Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  15. Hill R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  16. Kružík M., Mielke A., Roubícek T.: Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40, 389–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lubliner J.: Plasticity Theory. Macmillan, New York (1990)

    MATH  Google Scholar 

  18. Mainik A., Mielke A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22, 73–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martin J.B.: Plasticity. Fundamentals and General Results. MIT Press, Cambridge (1975)

    Google Scholar 

  20. Matthies, H., Strang, G., Christiansen, E.: The saddle point of a differential program. Energy Methods in Finite Element Analysis (Eds. Glowinski R., Rodin E. and Zienkiewicz O.C.) Wiley, New York, 309–318, 1979

  21. Miehe C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55, 1285–1322 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mielke A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mielke, A.: Evolution of rate-independent systems. In: Evolutionary Equations Vol. II. (Eds. Dafermos C.M. and Feireisl E.) Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, 461–559, 2005

  24. Mielke A., Theil F., Levitas V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ortiz M., Martin J.B.: Symmetry preserving return mapping algorithm and incrementally extremal paths: a unification of concepts. Int. J. Numer. Methods Eng. 28, 1839–1853 (1989)

    Article  MATH  Google Scholar 

  26. Ortiz M., Stanier L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  28. Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  29. Suquet P.: Sur les équations de la plasticité: existence et regularité des solutions. J. Mécanique 20, 3–39 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris, 1985. Translation of Problèmes Mathématiques en Plasticité. Gauthier-Villars, Paris, 1983

  31. Temam R., Strang G.: Duality and relaxation in the variational problem of plasticity. J. Mécanique 19, 493–527 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Dal Maso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maso, G.D., DeSimone, A., Mora, M.G. et al. A Vanishing Viscosity Approach to Quasistatic Evolution in Plasticity with Softening. Arch Rational Mech Anal 189, 469–544 (2008). https://doi.org/10.1007/s00205-008-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0117-5

Keywords

Navigation