Skip to main content
Log in

Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic β cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We have recently found that GPR120, which is abundantly expressed in intestine, functions as a receptor for unsaturated long-chain free fatty acids (FFAs) and that GPR120 stimulation promotes the secretion of glucagons-like peptide-1 (GLP-1) in the mouse (Hirasawa et al., Nat Med 11:90–94, 2005). In this study, we cloned and characterized rat GPR120 (rGPR120), and then we examined the in vivo effects of acute and long-term administration of the natural ligand α-linolenic acid (α-LA). The cloned rat GPR120 complimentary DNA had a seven transmembrane structure, and a homology comparison of human, mouse, and rat GPR120 revealed that the rat GPR120 (rGPR120) shares 85 and 98% sequence identity with the human and mouse GPR120 proteins, respectively. The tissue distribution and ligand properties of rGPR120 were similar to those of mouse GPR120. In addition, α-LA provoked a transient increase in [Ca2+]i levels in HEK293 cells expressing rGPR120. Furthermore, administration of α-LA to the rat increased plasma GLP-1 levels, and long-term administration of α-LA led to proliferation of pancreatic β cells, probably because of the enhanced GLP-1 secretion. These results show that rat GPR120 is a G-protein-coupled receptor whose ligand is a free fatty acid, and it may play an important role in the FFA-associated physiological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FFA:

free fatty acid

FFAR:

free fatty acid receptor

GPCR:

G-protein-coupled receptor

GLP-1:

glucagon-like peptide-1

α-LA:

α-linolenic acid

OA:

octanoic acid

rGPR120:

rat GPR120

References

  • Adachi T, Tanaka T, Takemoto K, Koshimizu TA, Hirasawa A, Tsujimoto G (2006) Free fatty acids administered into the colon promote the secretion of glucagon-like peptide-1 and insulin. Biochem Biophys Res Commun 340:332–337

    Article  PubMed  CAS  Google Scholar 

  • Baggio LL, Drucker DJ (2006) Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu Rev Med 57:265–281

    Article  PubMed  CAS  Google Scholar 

  • Brelje TC, Parsons JA, Sorenson RL (1994) Regulation of islet beta-cell proliferation by prolactin in rat islets. Diabetes 43:263–273

    Article  PubMed  CAS  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr., Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  PubMed  CAS  Google Scholar 

  • Brubaker PL, Drucker DJ (2004) Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145:2653–2659

    Article  PubMed  CAS  Google Scholar 

  • de la Tour D, Halvorsen T, Demeterco C, Tyrberg B, Itkin-Ansari P, Loy M, Yoo SJ, Hao E, Bossie S, Levine F (2001) Beta-cell differentiation from a human pancreatic cell line in vitro and in vivo. Mol Endocrinol 15:476–483

    Article  PubMed  Google Scholar 

  • Dupre J, Behme MT, Hramiak IM, McFarlane P, Williamson MP, Zabel P, McDonald TJ (1995) Glucagon-like peptide I reduces postprandial glycemic excursions in IDDM. Diabetes 44:626–630

    Article  PubMed  CAS  Google Scholar 

  • Feng DD, Luo Z, Roh SG, Hernandez M, Tawadros N, Keating DJ, Chen C (2006) Reduction in voltage-gated K currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology 147:674–682

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara K, Maekawa F, Yada T (2005) Oleic acid interacts with GPR40 to induce Ca2 signaling in rat islet beta-cells: mediation by PLC and L-type Ca2 channel and link to insulin release. Am J Physiol Endocrinol Metab 289:E670–E677

    Article  PubMed  CAS  Google Scholar 

  • Ghanekar D, Hadac EM, Holicky EL, Miller LJ (1997) Differences in partial agonist action at cholecystokinin receptors of mouse and rat are dependent on parameters extrinsic to receptor structure: molecular cloning, expression and functional characterization of the mouse type A cholecystokinin receptor. J Pharmacol Exp Ther 282:1206–1212

    PubMed  CAS  Google Scholar 

  • Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B (1995) Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 56:117–126

    PubMed  CAS  Google Scholar 

  • Hirai K, Shiwaku K, Tsuboi T, Torii M, Nishida H, Yamane Y (1983) Biological effects of Spirometra erinacei plerocercoids in several species of rodents. Z Parasitenkd 69:489–499

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa A, Shibata K, Kotosai K, Tsujimoto G (1994) Cloning, functional expression and tissue distribution of human cDNA for the vascular-type vasopressin receptor. Biochem Biophys Res Commun 203:72–79

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    Article  PubMed  CAS  Google Scholar 

  • Hugl SR, White MF, Rhodes CJ (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273:17771–17779

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    Article  PubMed  CAS  Google Scholar 

  • Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B (2000) Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Katsuma S, Hatae N, Yano T, Ruike Y, Kimura M, Hirasawa A, Tsujimoto G (2005) Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 280:19507–19515

    Article  PubMed  CAS  Google Scholar 

  • Kushiro M, Takahashi Y, Ide T (2004) Species differences in the physiological activity of dietary lignan (sesamin and episesamin) in affecting hepatic fatty acid metabolism. Br J Nutr 91:377–386

    Article  PubMed  CAS  Google Scholar 

  • Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V (2007) GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  PubMed  CAS  Google Scholar 

  • Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W (1993) Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JH, Linde S, Welinder BS, Billestrup N, Madsen OD (1989) Growth hormone is a growth factor for the differentiated pancreatic beta-cell. Mol Endocrinol 3:165–173

    PubMed  CAS  Google Scholar 

  • Oksenberg D, Marsters SA, O'Dowd BF, Jin H, Havlik S, Peroutka SJ, Ashkenazi A (1992) A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 360:161–163

    Article  PubMed  CAS  Google Scholar 

  • Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358–364

    Article  PubMed  CAS  Google Scholar 

  • Rocca AS, Brubaker PL (1995) Stereospecific effects of fatty acids on proglucagon-derived peptide secretion in fetal rat intestinal cultures. Endocrinology 136:5593–5599

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WE, Siegel EG, Creutzfeldt W (1985) Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 28:704–707

    Article  PubMed  CAS  Google Scholar 

  • Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD (2005) Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun 335:97–104

    Article  PubMed  CAS  Google Scholar 

  • Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol Pharmacol 48:250–258

    PubMed  CAS  Google Scholar 

  • Stoddart LA, Brown AJ, Milligan G (2007) Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5′-O-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol Pharmacol 71:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2007) Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn-Schmiedeberg’s Archives of Pharmacology (Oct 30, in press)

  • Vasavada RC, Garcia-Ocana A, Zawalich WS, Sorenson RL, Dann P, Syed M, Ogren L, Talamantes F, Stewart AF (2000) Targeted expression of placental lactogen in the beta cells of transgenic mice results in beta cell proliferation, islet mass augmentation, and hypoglycemia. J Biol Chem 275:15399–15406

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Brubaker PL (2002) Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 45:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant from the Scientific Fund of the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.A., T.-a.K., A.H., G.T.); the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO; G.T.,A.H.,T.-a.K.); the 21st Century COE Program “Knowledge Information Infrastructure for Genomic Science” (T.T., T.A., G.T.); the Ajinomoto Amino Acid Research Program (G.T.); the grant of Practical Application Research from Science and Technology Incubation Program in Advanced Regions of Japan Science and Technology Agency (G.T.); and the Mitsubishi Foundation (G.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozoh Tsujimoto.

Additional information

Toshiki Tanaka, Takeaki Yano, and Tetsuya Adachi equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Yano, T., Adachi, T. et al. Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic β cells. Naunyn-Schmied Arch Pharmacol 377, 515–522 (2008). https://doi.org/10.1007/s00210-007-0250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0250-y

Keywords

Navigation