Skip to main content

Advertisement

Log in

Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: a promising candidate for the treatment of Parkinson’s disease

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and gait impairment. So far, very few pharmacological agents have been isolated or developed that effectively inhibit the progression of PD. However, several studies have demonstrated that inflammatory processes play critical roles in PD. Therefore, anti-inflammatory agents may suppress disease progression in PD. 11-Dehydrosinulariolide was isolated from cultured soft corals. The anti-inflammatory effect of this molecule has been observed through suppression of the expression of two main pro-inflammatory proteins: inducible nitric oxide synthase and cyclooxygenase-2, in lipopolysaccharide-stimulated macrophage cells. We also found that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and apoptosis in a human neuroblastoma cell line (SH-SY5Y). The pharmacological activity of this compound has been studied, and it is associated with the inhibition of 6-OHDA-induced activation of caspase-3 and translocation of nuclear factor kappa B. 11-Dehydrosinulariolide increased the activation of survival-signaling phospho-Akt but not phospho-ERK. The neuroprotective effect of 11-dehydrosinulariolide was assessed here using 6-OHDA-treated SH-SY5Y cells, wherein neuroprotection is mediated through regulation of phosphatidylinositol 3-kinase (PI3K). Furthermore, 11-dehydrosinulariolide caused a significant decrease in caspase-3/7 activity in comparison to the 6-OHDA-treated group, indicating that 11-dehydrosinulariolide has neuroprotective properties. We conclude that 11-dehydrosinulariolide is a promising candidate for the treatment of Parkinson’s disease through its anti-apoptotic and anti-inflammatory action via PI3K signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almer G, Guégan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S (2001) Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol 49:176–185

    Article  PubMed  CAS  Google Scholar 

  • Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A, Kaufmann WE, Worley PF, Isakson P, Markowska AL (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21:8198–8209

    PubMed  CAS  Google Scholar 

  • Bernard S, France J, Liliane R, Bruno D, Yves A (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 275:321–328

    Article  Google Scholar 

  • Blunden G (2001) Biologically active compounds from marine organisms. Phytother Res 15:89–94

    Article  PubMed  CAS  Google Scholar 

  • Bohlken A, Cheung BB, Bell JL, Koach J, Smith S, Sekyere E, Thomas W, Norris M, Haber M, Lovejoy DB, Richardson DR, Marshall GM (2009) ATP7A is a novel target of retinoic acid receptor beta2 in neuroblastoma cells. Br J Cancer 100:96–105

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  PubMed  CAS  Google Scholar 

  • Camandola S, Mattson MP (2007) NF-kappa B as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets 11:123–132

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty C, Hsu CH, Wen ZH, Duh CY, Lin CS (2009a) Drug discovery from marine resources. Curr Sci 97:292–293

    Google Scholar 

  • Chakraborty C, Hsu CH, Wen ZH, Lin CS (2009b) Anticancer drugs discovery and development from marine organisms. Curr Top Med Chem 9:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064

    Article  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • Dodel RC, Eggert KM, Singer MS, Eichhorn TE, Pogarell O, Oertel WH (1998) Costs of drug treatment in Parkinson's disease. Mov Disord 13:249–254

    Article  PubMed  CAS  Google Scholar 

  • Duh CY, Wang SK, Tseng HK, Sheu JH (1998) A novel cytotoxic biscembranoid from the Formosan soft coral Sinularia flexibilis. Tetrahedron Lett 39:7121–7122

    Article  CAS  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  PubMed  CAS  Google Scholar 

  • Gold BG, Nutt JG (2002) Neuroimmunophilin ligands in the treatment of Parkinson’s disease. Curr Opin Pharmacol 2:82–86

    Article  PubMed  CAS  Google Scholar 

  • Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193:279–290

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  PubMed  CAS  Google Scholar 

  • Herin M, Colin M, Tursch B (1976) Chemical studies of marine invertebrates. XXV. Flexibilene, an unprecedented fifteen-membered ring diterpene hydrocarbon from the soft coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea). Bull Soc Chim Belg 85:801–803

    Article  CAS  Google Scholar 

  • Hoang T, Choi DK, Nagai M, Wu DC, Nagata T, Prou D, Wilson GL, Vila M, Jackson-Lewis V, Dawson VL, Dawson TM, Chesselet MF, Przedborski S (2009) Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med 47:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1970) The metabolism of brain dopamine in human parkinsonism. Riv Pathol Nerv Ment 91:281–286

    CAS  Google Scholar 

  • Hsieh PW, Chang FR, McPhail AT, Lee KH, Wu YC (2003) New cembranolide analogues from the Formosan soft coral Sinularia flexibilis and their cytotoxicity. Nat Prod Res 17:409–418

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Hirsch EC (2003) Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 53:925–962

    Article  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappa B is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Xu X, Zhang F, el-Fakahany EE, Ross ME (1995) Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 15:52–59

    Article  PubMed  CAS  Google Scholar 

  • Iravani MM, Kashefi K, Mander P, Rose S, Jenner P (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110:49–58

    Article  PubMed  CAS  Google Scholar 

  • Jean YH, Chen WF, Duh CY, Huang SY, Hsu CH, Lin CS, Sung CS, Chen IM, Wen ZH (2008) Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur J Pharmacol 578:323–331

    Article  PubMed  CAS  Google Scholar 

  • Jean YH, Chen WF, Sung CS, Duh CY, Huang SY, Lin CS, Tai MH, Tzeng SF, Wen ZH (2009) Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br J Pharmacol 158:713–725

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Yu PH (2005) Involvement of extracellular signal-regulated kinases 1/2 and (phosphoinositide 3-kinase)/Akt signal pathways in acquired resistance against neurotoxin of 6-hydroxydopamine in SH-SY5Y cells following cell-cell interaction with astrocytes. Neuroscience 133:405–411

    Article  PubMed  CAS  Google Scholar 

  • Kamel HN, Slattery M (2005) Terpenoids of Sinularia: chemistry and biomedical applications. Pharm Biol 43:253–269

    Article  CAS  Google Scholar 

  • Lee KY, Sung SH, Kim YC (2006) Neuroprotective bibenzyl glycosides of Stemona tuberose roots. J Nat Prod 69:679–681

    Article  PubMed  CAS  Google Scholar 

  • Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 27:245–250

    Article  PubMed  CAS  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Linder J, Stenlund H, Forsgren L (2010) Incidence of Parkinson's disease and parkinsonism in northern Sweden: a population-based study. Mov Disord 25:341–348

    Article  PubMed  Google Scholar 

  • Marchetti B, Abbracchio MP (2005) To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 26:517–525

    Article  PubMed  CAS  Google Scholar 

  • Martinez A (2007) Marine-derived drugs in neurology. Curr Opin Investig Drugs 8:525–530

    PubMed  CAS  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson's disease. Clin Neurosci Res 6:261–281

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL (2003) Limitations of current Parkinson's disease therapy. Ann Neurol 53:3–12

    Article  Google Scholar 

  • Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361

    Article  PubMed  CAS  Google Scholar 

  • Serra PA, Esposito G, Enrico P, Mura MA, Migheli R, Delogu MR, Miele M, Desole MS, Grella G, Miele E (2000) Manganese increases L-DOPA auto-oxidation in the striatum of the freely moving rat: potential implications to L-DOPA long-term therapy of Parkinson's disease. Br J Pharmacol 130:937–945

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Sharad S, Kapur S (2004) Free radical and oxidative stress in neurodegenerative disease: relevance of dietary antioxidants. JIACM 5:218–225

    Google Scholar 

  • Tak PP, Firestein GS (2001) NF-kappa B: a key role in inflammatory diseases. J Clin Invest 107:7–11

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol 3:61–70

    Article  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003) Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5438

    Article  PubMed  CAS  Google Scholar 

  • Werner P, Mytilineou C, Cohen G, Yahr MD (1994) Impaired oxidation of pyruvate in human embryonic fibroblasts after exposure to L-dopa. Eur J Pharmacol 263:157–162

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang JJ, Liu GT (2007) The novel squamosamide derivative FLZ protects against 6-hydroxydopamine-induced apoptosis through inhibition of related signal transduction in SH-SY5Y cells. Eur J Pharmacol 561:1–6

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann NY Acad Sci 1147:93–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by research grants from Chang Gung Memorial Hospital (CMRPG881141) and the National Science Council of Taiwan (99-2313-B-110-003-MY03 and 100-2325-B-110-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hong Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WF., Chakraborty, C., Sung, CS. et al. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: a promising candidate for the treatment of Parkinson’s disease. Naunyn-Schmiedeberg's Arch Pharmacol 385, 265–275 (2012). https://doi.org/10.1007/s00210-011-0710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0710-2

Keywords

Navigation