Skip to main content
Log in

Effect of S-methylisothiourea in acetaminophen-induced hepatotoxicity in rat

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Nitric oxide synthesized from inducible nitric oxide synthase (iNOS) plays role in acetaminophen (APAP)-induced liver damage. The present study was undertaken to evaluate the effect of iNOS inhibitor S-methylisothiourea (SMT) in APAP-induced hepatotoxicity in rats (1 g/kg, i.p.). SMT was (10, 30, and 100 mg/kg; i.p.) given 30 min before and 3 h after APAP administration. At 6 and 24 h, blood was collected to measure alanine transaminase (ALT), aspartate transaminase (AST), and nitrate plus nitrite (NOx) levels in serum. At 48 h, animals were sacrificed, and blood and liver tissues were collected for biochemical estimation. SMT reduced significantly the serum ALT, AST, and NOx levels at 24 and 48 h and liver NOx levels at 48 h as compared with APAP-treated control. The amount of peroxynitrite measured by rhodamine assay was significantly reduced by SMT, as compared with APAP-treated control group. SMT treatment (30 mg/kg) has significantly reduced the lipid peroxidation and protein carbonyl levels, increased SOD and catalase, and reduced glutathione and total thiol levels significantly as compared with APAP-treated control. SMT 30 mg/kg dose has protected animals from APAP-induced hypotension and reduced iNOS gene expression. Hepatocytes were isolated from animals, and effect of SMT on apoptosis, MTP, and ROS generation was studied, and their increased value in APAP intoxicated group was found to be significantly decreased by SMT (30 mg/kg) at 24 and 48 h. In conclusion, nitric oxide produced from iNOS plays important role in toxicity at late hours (24 to 48 h), and SMT inhibits iNOS and reduces oxidative and nitrosative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Zaher AO, Abdel-Rahman MM, Hafez MM, Omran FM (2007) Role of nitric oxide and reduced glutathione in the protective effects of aminoguanidine, gadolinium chloride and oleanolic acid against acetaminophen-induced hepatic and renal damage. Toxicol 234:124–134

    Article  CAS  Google Scholar 

  • Ajith TA, Hema U, Aswathy MS (2007) Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food Chem Toxicol 45:2267–2272

    Article  PubMed  CAS  Google Scholar 

  • Aranow JS, Zhuang J, Wang H, Larkin V, Smith M, Fink MP (1996) A selective inhibitor of inducible nitric oxide synthase prolongs survival in a rat model of bacterial peritonitis: comparison with two nonselective strategies. Shock 5:116–121

    Article  PubMed  CAS  Google Scholar 

  • Arkovitz MS, Wispe JR, Garcia VF, Szabo C (1996) Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary transvascular flux during acute endotoxemia. J Prd Swg 31:1009–1015

    CAS  Google Scholar 

  • Baggiolini M, Wymann MP (1990) Turning on the respiratory burst. Trends Biochem Sci 15:69–72

    Article  PubMed  CAS  Google Scholar 

  • Bergemeyer HU (1983) Methods of enzymatic analysis (Berg Meyer, H. U., Ed.) 3rd edn., New York, NY: Academic Press. pp 165-166

  • Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin JL, George JW, Shah AG (2002) Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatol 35:289–298

    Article  CAS  Google Scholar 

  • Bus JS, Aust SD, Gibson JE (1976) Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environ Health Pers 16:139–146

    Article  CAS  Google Scholar 

  • Castedo M, Ferri K, Roumier T, Me’tivier D, Zamzami N, Kroemer G (2002) Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Meth 265:39–47

    Article  CAS  Google Scholar 

  • Chance B, Stein GD, Roughton RJ (1952) The mechanism of catalase action 1—steady state analysis. Arch Biochem Biophys 37:301–309

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Krausz KW, Idle JR, Gonzalez FJ (2008) Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 283:4543–4559

    Article  PubMed  CAS  Google Scholar 

  • Chen SJ, Li SY, Shih CC, Liao MH, Wu CC (2010) NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats. Shock 33:473–478

    Article  PubMed  Google Scholar 

  • Cigremis Y, Turel H, Adiguzel K, Akgoz M, Kart A, Karaman M, Ozen H (2009) The effects of acute acetaminophen toxicity on hepatic mRNA expression of SOD, CAT, GSH-Px, and levels of peroxynitrite, nitric oxide, reduced glutathione, and malondialdehyde in rabbit. Mol Cell Biochem 323:31–38

    Article  PubMed  CAS  Google Scholar 

  • Dormandy TL (1980) An APAProach to free radicals in medicine and biology. Acta Physiol Scand 492:153–168

    Google Scholar 

  • Fiorucci S, Antonelli E, Mencarelli A, Palazzetti B, Alvarez-Miller L, Muscara M, del Soldato P (2002) A NO-releasing derivative of acetaminophen spares the liver by acting at several checkpoints in the Fas pathway. Br J Pharmacol 135:589–599

    Article  PubMed  CAS  Google Scholar 

  • Futter LE, Al-Swayeh OA, Moore PK (2001) A comparison of the effect of nitroparacetamol and paracetamol on liver injury. Br J Pharmacol 132:10–12

    Article  PubMed  CAS  Google Scholar 

  • Gardner CR, Heck DE, Yang CS, Thomas PE, Zhang XJ, DeGeorge GL, Laskin JD, Laskin DL (1998) Role of nitric oxide in acetaminophen-induced hepatotoxicity in the rat. Hepatol 27:748–754

    Article  CAS  Google Scholar 

  • Gardner CR, Laskin JD, Dambach DM, Sacco M, Durham SK, Bruno MK, Cohen SD, Gordon MK, Gerecke DR, Zhou P, Laskin DL (2002) Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol APAPl Pharmacol 184:27–36

    Article  CAS  Google Scholar 

  • Graham GG, Scott KF, Day RO (2005) Tolerability of paracetamol. Drug Safety 28:227–240

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Hinson JA, Bucci TJ, Irwin LK, Michael SL, Mayeux PR (2002) Effect of inhibitors of nitric oxide synthase on acetaminophen-induced hepatotoxicity in mice. Nitric Oxide 6:160–167

    Article  PubMed  CAS  Google Scholar 

  • Hinson JA, Reid AB, McCullough SS, James LP (2004) Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev 36:805–822

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Abril ER, Bethea NW, McCuskey RS (2004) Role of nitric oxide in hepatic microvascular injury elicited by acetaminophen in mice. Am J Physiol Gastrointest Liver Physiol 286:G60–G67

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke H, Knight TR, Bajt ML (2003) The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 144:279–288

    Article  PubMed  CAS  Google Scholar 

  • James LP, McCullough SS, Lamps LW, Hinson JA (2003) Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol Sci 75:458–467

    Article  PubMed  CAS  Google Scholar 

  • Jensen EV (1959) Sulfhydryl–disulfide interchanges. Science 130:1319–1323

    Article  PubMed  CAS  Google Scholar 

  • Julou-Schaeffer G, Gray GA, Fleming I, Parratt JR, Stoclet JC (1990) Loss of vascular responsiveness induced by endotoxin involves the l-arginine pathway. Am J Physiol 259:H1038–H1043

    PubMed  CAS  Google Scholar 

  • Kamanaka Y, Kawabatab A, Matsuyaa H, Tagaa C, Sekiguchib F, Kawao N (2003) Effect of a potent iNOS inhibitor (ONO-1714) on acetaminophen-induced hepatotoxicity in the rat. Life Sci 74:793–802

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama T, Sato C, Liu J, Tajiri K, Miyakawa H, Marumo F (1993) Role of lipid peroxidation in acetaminopheninduced hepatotoxicity: comparison with carbon tetrachloride. Toxicol Lett 66:7–12

    Article  PubMed  CAS  Google Scholar 

  • Kaplowitz N (2000) Mechanism of liver cell injury. J Hepatol 32:39–47

    Article  PubMed  CAS  Google Scholar 

  • Kaplowitz N (2004) Acetaminophen hepatotoxicity: what do we know, what don’t we know, and what do we do next? Hepatology 40:23–26

    Article  PubMed  Google Scholar 

  • Kim PKM, Billiar TR (2000) Give me iNOS or give me death. Hepatol 34:436–437

    Google Scholar 

  • Knight TR, Ho YS, Farhood A, Jaeschke H (2002) Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Therap 303:468–475

    Article  CAS  Google Scholar 

  • Knight TR, Fariss MW, Farhood A, Jaeschke H (2003) Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci 76:229–236

    Article  PubMed  CAS  Google Scholar 

  • Kon K, Kim JS, Jaeschke H, Lemasters JJ (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:1170–1179

    Article  PubMed  CAS  Google Scholar 

  • Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiodt FV, Ostapowicz G, Shakil AO, Lee WM (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Laskin JD, Heck DE, Gardner CR, Laskin D (2001) Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxid Redox Signal 3:261–271

    Article  PubMed  CAS  Google Scholar 

  • Leung TM, George LT, Emily CL, Thomas YH, Lau ML, Amin AN (2008) Endothelial nitric oxide synthase is a critical factor in experimental liver fibrosis. Int J Exp Path 89:241–250

    Article  CAS  Google Scholar 

  • Li C, Liu J, Saavedra JE, Keefer LK, Waalkes MP (2003) The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced nephrototoxicity in mice. Toxicol 189:173–180

    Article  CAS  Google Scholar 

  • Lin CC, Shieh DE, Yen MH (1997) Hepatoprotective effect of the fractions of Ban-zhi-lian on experiment liver injuries in rat. J Ethnopharmacol 56:193–200

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Li C, Waalkes MP, Clark J, Myers P, Saavedra JE, Keefer LK (2003) The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced hepatotoxicity in mice. Hepatology 37:324–333

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct methods. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Madesh M, Balasubramanium KA (1998) Microtitre plate assay for superoxide dismutase using MMT reduction by superoxide. Indian J Biochem Biophys 35:184–188

    PubMed  CAS  Google Scholar 

  • Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116

    Article  PubMed  CAS  Google Scholar 

  • Mc Crod JM, Keele BB, Fridovich I (1976) An enzyme based theory of obligate anaerobiosis, the physiological functions of superoxide dismutase. Proc Nat Acad Sci USA 68:1024–1032

    Article  Google Scholar 

  • Michael SL, Mayeux PR, Bucci TJ, Warbritton AR, Irwin LK, Pumford NR, Hinson JA (2001) Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide 5:432–441

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Corcoran GB, Smith CV, Hughes H, Lauterburg BH (1981) Alkylation and peroxidation injury from chemically reactive metabolites. Adv Exp Med Biol 136:199–223

    PubMed  Google Scholar 

  • Mladenovic D, Radosavljevic T, Ninkovic M, Vucevic D, Jesic-Vukicevic R, Todorovic V (2009) Liver antioxidant capacity in the early phase of acute paracetamol-induced liver injury in mice. Food Chem Toxicol 47:866–870

    Article  PubMed  CAS  Google Scholar 

  • Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2, 7-dichlorofluorescin diacetate, luminol and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582

    Article  PubMed  CAS  Google Scholar 

  • Neil W, Kooy JA, Royall HS, Joseph SB (1994) Peroxynitrite mediated oxidation of dihydrorhodamine123. Free Radical Biol Med 16:149–156

    Article  Google Scholar 

  • Nicotera P, Rundgren M, Porubek DJ, Cotgreave I, Moldeus P, Orrenius S, Nelson SD (1989) On the role of Ca2+ in the toxicity of alkylating and oxidizing quinone imines in isolated hepatocytes. Chem Res Toxicol 2:46–50

    Article  PubMed  CAS  Google Scholar 

  • Nieminen AL, Gores GJ, Bond JM, Imberti R, Herman B, Lemasters JJ (1992) A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol APAPl Pharmacol 115:147–155

    Article  CAS  Google Scholar 

  • Numata M, Shunsuke S, Naoki M, Akira M, Yoji N, Satoshi I, Takeshi K, Takao O (1998) Inhibition of inducible nitric oxide synthase prevents LPS-induced acute lung injury in dogs. J Immunol 160:3031–3037

    PubMed  CAS  Google Scholar 

  • Raghuramulu N, Nair KM, Kalyanasundaram S (2003) A manual of laboratory techniques, National Institutes of Nutrition, Hyderabad, India

  • Recknagel RO, Glende EA, Dolak JA, Waller RL (1989) Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 43:139–154

    Article  PubMed  CAS  Google Scholar 

  • Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA (2005) Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 312:509–516

    Article  PubMed  CAS  Google Scholar 

  • Saito C, Lemasters JJ, Jaeschke H (2010) C-jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol APAPl Pharmacol 246:8–17

    Article  CAS  Google Scholar 

  • Saran M, Michel C, Bors W (1990) Implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun 10:221–226

    Article  PubMed  CAS  Google Scholar 

  • Sastry KVH, Moudgal RP, Mohan J, Tyagi JS, Rao GS (2002) Spectrophotometric determination of serum nitrite and nitrate by copper–cadmium alloy. Analyt Biochem 306:79–82

    Article  PubMed  CAS  Google Scholar 

  • Searle AJ, Wilson RJ (1980) Glutathione peroxidase: effect of superoxide, hydroxyl and bromine free radicals on enzymic activity. Int J Radi Biol 37:213–219

    Google Scholar 

  • Sedlak J, Lindsay S (1986) Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellman’s reagent. J Biochem Biophys Methods 93:259–267

    Google Scholar 

  • Shafiq-ur-rehman S (1984) Lead-induced lipid peroxidation in brain. Toxicol Lett 21:333–337

    Article  PubMed  CAS  Google Scholar 

  • Stoclet JC, Martnez MC, Ohlmann P, Chasserot S, Schott C, Kleschyov AL, Schneider F, Andriantsitohaina R (1999) Induction of nitric oxide synthase and dual effects of nitric oxide and cycloxygenase products in regulation of arterial contraction in human septic shock. Circulation 100:107–112

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Southan GJ, Thiemerrnann C (1994) Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci U S A 91:12472–12476

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Salzman AL, Ischiropoulos H (1995) Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FASEB Lett 372:229–232

    Article  CAS  Google Scholar 

  • Terneus MV, Kiningham KK, Carpenter AB, Suilivan SB, Valentovic MA (2007) Comparison of S-adenosyl-l-methionine and N-acetylcystine protective effects on acetaminophen hepatic toxicity. J Pharmacol Exp Ther 320:99–107

    Article  PubMed  CAS  Google Scholar 

  • Terneus MV, Brown JM, Carpenter AB, Valentovic MA (2008) Comparison of S-adenosyl-l-methionine (SAMe) and N-acetylcystine protective effects on hepatic damage when administered after acetaminophen overdose. Toxicology 244:25–34

    Article  PubMed  CAS  Google Scholar 

  • Tirmenstein MA, Nelson SD (1989) Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3-hydroxyacetanilide, in mouse liver. J Biol Chem 264:9814–9819

    PubMed  CAS  Google Scholar 

  • Tsokos KJ (1989) Evidence in vivo for elevation of intracellular free Ca2+ in the liver after diquat, acetaminophen, and CCl4. Biochem Pharmacol 38:3061–3065

    Article  Google Scholar 

  • Vos TA, Gouw AS, Klok PA, Havinga R, Van GH, Huitema S, Roelofsen H, Kuipers F, Jansen PL, Moshage H (1997) Differential effects of nitric oxide synthase inhibitors on endotoxin-induced liver damage in rats. Gastroenterology 113:1323–1333

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Jerrels TR, Spitzer JJ (1996) Decreased production of reactive oxygen intermediates is an early event during in vitro apoptosis of rat thymocytes. Free Rad Biol Med 20:533–542

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC, Buss IH, Chan TP, Plank LD, Clark MA, Windsor JA (2000) Protein carbonyl measurements show evidence of early oxidative stress in critically ill patients. Crit Care Med 28:143–149

    Article  PubMed  CAS  Google Scholar 

  • Wohaieb SA, Godin DV (1987) Alterations in free radical tissue-defense mechanisms in streptozotocin diabetes in rats: effect of insulin treatment. Diabetes 36:1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Tomizawa K, Fujikawa M, Sato Y, Yamada H, Horii I (2007) Evaluation of human hepatocyte chimeric mice as a model for toxicological investigation using panomic APAProaches—effect of acetaminophen on the expression profiles of proteins and endogenous metabolites in liver, plasma and urine. J Toxicol Sci 32:205–215

    Article  PubMed  CAS  Google Scholar 

  • Yaroshenko T, Corda M (2006) Role of nitric oxide in chemically-induced hepatotoxicity. Annales Universitis Marie Curie-Sklodowska, Lubin-Polonia 19:1–28

    Google Scholar 

  • Zingarelli B, Hake PW, Yang Z, O’Connor M, Denenberg A, Wong HR (2002) Absence of inducible nitric oxide synthase modulates early reperfusion-induced NF-kB and AP-1 activation and enhances myocardial damage. FASEB J 16:327–342

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra K. Tandan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

More, A.S., Kumari, R.R., Gupta, G. et al. Effect of S-methylisothiourea in acetaminophen-induced hepatotoxicity in rat. Naunyn-Schmiedeberg's Arch Pharmacol 385, 1127–1139 (2012). https://doi.org/10.1007/s00210-012-0789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0789-0

Keywords

Navigation