Skip to main content

Advertisement

Log in

Organ-protective effects on the liver and kidney by minocycline in small piglets undergoing cardiopulonary bypass

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cardiopulmonary bypass (CPB) often is required for the operative correction of congenital heart defects in small infants. Unfortunately, CPB is associated with injury of inner organs such as the brain, kidney, lung, and liver. Renal failure and increase in liver enzymes are typical side effects observed after CPB. Here, we investigate whether organ protection of the kidney and liver can be achieved with the application of minocycline, which is known—besides its anti-infective effects—to act as a poly-ADP-ribose-polymerase inhibitor. Twenty-nine 4-week-old Angler Sattelschwein-piglets (8–15 kg) were divided into four groups: control group (n = 8), CPB group (n = 9), minocycline-control group (n = 6), and the minocycline-CPB group (n = 6). CPB groups were thoracotomized and underwent CPB for 120 min (cross-clamp, 90 min; reperfusion, 30 min) followed by a 90-min recovery time. The control groups also were thoracotomized but not connected to CPB. The minocycline group received 4 mg/kg minocycline before and 2 mg/kg after CPB. In the kidneys, CPB histologically resulted in widening of Bowman’s capsule, and—mainly in tubules—formation of poly-ADP-ribose, nitrosylation of tyrosine-residues, nuclear translocation of hypoxia-induced factor HIF-1α, and of apoptosis-inducing factor (AIF). In addition, we found significantly less ATP in the kidney and significantly increased plasma urea and creatinine. Similar but gradually attenuated changes were found in the liver together with significantly elevated de-Ritis coefficient. These changes in the kidney and liver were significantly diminished by minocycline (except AIF in the liver which was similar in all groups). In conclusion, CPB causes damage in the kidney and—to a lower degree—in the liver, which can be attenuated by minocycline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AEC:

3-Amino-9-ethylcarbazol

AIF:

Apoptosis inducing factor

ALT:

Alanine-aminotransferase

AST:

Aspartate-aminotransferase

BSA:

Bovine serum albumin

CPB:

Cardiopulmonary bypass

DAB:

3,3′-Diaminobenzidine

HE:

Hematoxylin eosin

HIF:

Hypoxia-inducible factor

HPLC:

High-performance liquid chromatography

PAR:

Poly-ADP-ribose

PARP:

Poly-ADP-ribose-polymerase

PBS:

Phosphate-buffered saline

References

  • Alano CC, Kauppinen TM, Valls AV, Swanson RA (2006) Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A 103(25):9685–9690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • An Y, Xiao YB (2007) Growth hormone prevents acute liver injury induced by cardiopulmonary bypass in a rat model. J Thorac Cardiovasc Surg 134:342–350

    Article  CAS  PubMed  Google Scholar 

  • Andrási TB, Blázovics A, Szabó G, Vahl CF, Hagl S (2005) Poly(ADP-ribose) polymerase inhibitor PJ-34 reduces mesenteric vascular injury induced by experimental cardiopulmonary bypass with cardiac arrest. Am J Physiol Heart Circ Physiol 288(6):H2972–H2978

    Article  PubMed  Google Scholar 

  • Ascione R, Talpahewa S, Rajakaruna C, Reeves BC, Lovell AT, Cohen A, Angelini GD (2006) Splanchnic organ injury during coronary surgery with or without cardiopulmonary bypass: a randomized, controlled trial. Ann Thorac Surg 81(1):97–103

    Article  PubMed  Google Scholar 

  • Asimakopoulos G, Smith PL, Ratnatunga CP, Taylor KM (1999) Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. Ann Thorac Surg 68(3):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Baskin E, Saygili A, Harmanci K, Agras PI, Özdemir FN, Mercan S, Tokel K, Saatci U (2005) Acute renal failure and mortality after open-heart surgery in infants. Ren Fail 27:557–560

    Article  PubMed  Google Scholar 

  • Bellinger DC, Jonas RA, Rappaport LA, Wypij D, Wernovsky G, Kuban KC, Barnes PD, Holmes GL, Hickey PR, Strand RD (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555

    Article  CAS  PubMed  Google Scholar 

  • Biró E, van den Goor JM, de Mol BA, Schaap MC, Ko LY, Sturk A, Hack CE, Nieuwland R (2011) Complement activation on the surface of cell-derived microparticles during cardiac surgery with cardiopulmonary bypass - is retransfusion of pericardial blood harmful? Perfusion 26:21–29

    Article  PubMed  Google Scholar 

  • Cai DS, Jin BB, Pei L, Jin Z (2010) Protective effects of penehyclidine hydrochloride on liver injury in a rat cardiopulmonary bypass model. Eur J Anaesthesiol 27:824–828

    Article  CAS  PubMed  Google Scholar 

  • Conlon PJ, Stafford-Smith M, White WD, Newman MF, King S, Winn MP, Landolfo K (1999) Acute renal failure following cardiac surgery. Nephrol Dial Transplant 14:1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Dhein S, Krause N, Ullmann C, Flister A, Lehmann S, Muth P, Walther T, Kostelka M, Mohr FW (2008) Ischemic and inflammatory lung impairment by extracorporeal circulation: effect of PARP-inhibition by INO1001. Pharmacol Res 58(5–6):332–339

    Article  CAS  PubMed  Google Scholar 

  • du Plessis AJ (1999) Mechanisms of brain injury during infant cardiac surgery. Semin Pediatr Neurol 6(1):32–47

    Article  PubMed  Google Scholar 

  • Esper SA, Subramaniam K, Tanaka KA (2014) Pathophysiology of cardiopulmonary bypass: current strategies for the prevention and treatment of anemia, coagulopathy, and organ dysfunction. Semin Cardiothorac Vasc Anesth 18:161–176

    Article  PubMed  Google Scholar 

  • Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ingham E (1990) The effects of tetracyclines and erythromycin on complement activation in vitro. Acta Derm Venereol 70(6):531--534

  • Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11

    Article  CAS  PubMed  Google Scholar 

  • Kawahito K, Kobayashi E, Ohmori M, Harada K, Kitoh Y, Fujimura A, Fuse K (2000) Enhanced responsiveness of circulatory neutrophils after cardiopulmonary bypass: increased aggregability and superoxide producing capacity. Artif Organs 24:37–42

    Article  CAS  PubMed  Google Scholar 

  • Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD (1983) Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 86:845–857

    CAS  PubMed  Google Scholar 

  • Levy JH, Tanaka KA (2003) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 75:715–720

    Article  Google Scholar 

  • Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR (2011) Incidence, risk factors, and outcome of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med 39:1493–1499

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Li T, Qi H, Yuan F (2015) Minocycline protects against hepatic ischemia/reperfusion injury in a rat model. Biomed Rep 3(1):19–24

    PubMed Central  PubMed  Google Scholar 

  • Pacher P, Szabó C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25(3):235–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plurad D, Martin M, Green D, Salim A, Inaba K, Belzberg H et al (2007) The decreasing incidence of late posttraumatic acute respiratory distress syndrome: the potential role of lung protective ventilation and conservative transfusion practice. J Trauma 63:1–7

    Article  PubMed  Google Scholar 

  • Rosner MH, Portilla D, Okusa MD (2008) Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med 23:3–18

    Article  PubMed  Google Scholar 

  • Ruvolo G, Speziale G, Greco E, Tritapepe L, Mollace V, Nistico G, Marino B (1995) Nitric oxide release during hypothermic versus normothermic cardiopulmonary bypass. Eur J Cardiothorac Surg 9:651–654

    Article  CAS  PubMed  Google Scholar 

  • Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14(12):2545–2579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stallwood MI, Grayson AD, Mills K, Scawn ND (2004) Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg 77:968–972

    Article  PubMed  Google Scholar 

  • Stoney WS (2009) Evolution of cardiopulmonary bypass. Circulation 119:2844–2853

    Article  PubMed  Google Scholar 

  • Szabó C (2005) Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res 52:34–43

    Article  PubMed  Google Scholar 

  • Szabó G, Soos P, Mandera S, Heger U, Flechtenmacher C, Bährle S et al (2004a) INO-1001 a novel poly(ADP-ribose) polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporeal circulation. Shock 21:426–432

    Article  PubMed  Google Scholar 

  • Szabó G, Seres L, Soós P, Flechtenmacher C, Zsengellér Z, Sack FU, Szabó C, Hagl S (2004b) Poly-ADP-ribose polymerase inhibition reduces mesenteric injury after cardiopulmonary bypass. Thorac Cardiovasc Surg 52(6):338–343

    Article  PubMed  Google Scholar 

  • Talor JJ, Undar A (2011) Pediatric cardiopulmonary bypass: does perfusion mode matter? World J Pediatr Congenit Heart Surg 2:296–300

    Article  PubMed  Google Scholar 

  • Tang ATM, Knott J, Nanson J, Hsu J, Haw MP, Ohri SK (2002) A prospective randomized study to evaluate the renoprotective action of beating heart coronary surgery in low risk patients. Eur J Cardiothorac Surg 22:118–123

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Kim SH, Honbo N, Karliner JS, Alano CC (2010) Minocycline protects cardiac myocytes against simulated ischemia–reperfusion injury by inhibiting poly(ADP-ribose) polymerase-1. J Cardiovasc Pharmacol 56(6):659–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tumlin J, Stacul F, Adam A, Becker CR, Davidson C, Lameire N, McCullough PA (2006) Pathophysiology of contrast-induced nephropathy. Am J Cardiol 98:14K–20K

    Article  CAS  PubMed  Google Scholar 

  • Twal M, Kiefer P, Salameh A, Schnabel J, Ossmann S, von Salisch S, Krämer K, Sobiraj A, Kostelka M, Mohr FW, Dhein S (2013) Reno-protective effects of epigallocatechingallate in a small piglet model of extracorporeal circulation. Pharmacol Res 67(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Virág L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabó C (1998) Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly(ADP-ribose) synthetase (PARS) activation. Immunology 94:345–355

    Article  PubMed Central  PubMed  Google Scholar 

  • Volonté MG, Yuln G, Quiroga P, Consolini AE (2004) Development of an HPLC method for determination of metabolic compounds in myocyrdial tissue. J Pharm Biomed Anal 35:647–653

    Article  PubMed  Google Scholar 

  • Weight SC, Furness PN, Nicholson ML (1998) New model of renal warm ischaemia-reperfusion injury for comparative functional, morphological and pathophysiological studies. Br J Surg 85:1669–1673

    Article  CAS  PubMed  Google Scholar 

  • Yeh CH, Chen TP, Lee CH, Wu YC, Lin YM, Jing Lin P (2006) Inhibition of poly(adp-ribose) polymerase reduces cardiomyocytic apoptosis after global cardiac arrest under cardiopulmonary bypass. Shock 25(2):168–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by a grant given by ProCordis (Leipzig, Germany) to S.D.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dhein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhein, S., Grassl, M., Gerdom, M. et al. Organ-protective effects on the liver and kidney by minocycline in small piglets undergoing cardiopulonary bypass. Naunyn-Schmiedeberg's Arch Pharmacol 388, 663–676 (2015). https://doi.org/10.1007/s00210-015-1115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1115-4

Keywords

Navigation