Skip to main content
Log in

H3 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing retrieval

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Accumulated evidence suggests a role for histamine in cognition and the use of H3 receptor antagonists in the treatment of learning and memory disorders.

Objectives

The aim of the current study was to investigate the cognition enhancing properties of ciproxifan, an H3 receptor antagonist, after natural forgetting in normal adult rats.

Materials and methods

The novel object discrimination task, a recognition memory test based on spontaneous exploratory behaviour, was used. Briefly, rats exposed to two identical objects during an acquisition trial can discriminate between a novel object and a familiar one during a subsequent choice trial after a short delay but not after a 24-h inter-trial interval.

Results

The scopolamine (0.5 mg/kg, i.p.)-induced impairment after a short delay was abolished by ciproxifan (p < 0.001). Natural forgetting was prevented by a single administration of ciproxifan (3 mg/kg) prior to the retention test (p < 0.001) but not when administered before or immediately after the acquisition trial (schedule effect p < 0.05), demonstrating a specific activity on memory retrieval. Pretreatment with either pyrilamine (10 mg/kg), an H1 antagonist, or zolantidine (10 mg/kg), an H2 antagonist, prevented the retrieval enhancement effect of ciproxifan (p < 0.05 and p < 0.001, respectively).

Conclusions

Histamine H3 receptor antagonists restore the performance of rats impaired by scopolamine and enhance recognition memory after acute administration before the retrieval phase via a mechanism dependent on H1 and H2 receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302(5911):832–837

    Article  PubMed  CAS  Google Scholar 

  • Arrang JM, Garbarg M, Schwartz JC (1987a) Autoinhibition of histamine synthesis mediated by presynaptic H3-receptors. Neuroscience 23(1):149–157

    Article  PubMed  CAS  Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987b) Highly potent and selective ligands for histamine H3-receptors. Nature 327(6118):117–123

    Article  PubMed  CAS  Google Scholar 

  • Bacciottini L, Passani MB, Mannaioni PF, Blandina P (2001) Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 124(2):183–194

    Article  PubMed  CAS  Google Scholar 

  • Bacciottini L, Passani MB, Giovannelli L, Cangioli I, Mannaioni PF, Schunack W, Blandina P (2002) Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 15(10):1669–1680

    Article  PubMed  Google Scholar 

  • Bernaerts P, Lamberty Y, Tirelli E (2004) Histamine H3 antagonist thioperamide dose-dependently enhances memory consolidation and reverses amnesia induced by dizocilpine or scopolamine in a one-trial inhibitory avoidance task in mice. Behav Brain Res 154(1):211–219

    PubMed  CAS  Google Scholar 

  • Blandina P, Giorgetti M, Bartolini L, Cecchi M, Timmerman H, Leurs R, Pepeu G, Giovannini MG (1996) Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br J Pharmacol 119(8):1656–1664

    PubMed  CAS  Google Scholar 

  • Blandina P, Efoudebe M, Cenni G, Mannaioni P, Passani MB (2004) Acetylcholine, histamine, and cognition: two sides of the same coin. Learn Mem 11(1):1–8

    Article  PubMed  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672

    Article  PubMed  CAS  Google Scholar 

  • Calcutt CR, Ganellin CR, Griffiths R, Leigh BK, Maguire JP, Mitchell RC, Mylek ME, Parsons ME, Smith IR, Young RC (1988) Zolantidine (SK&F 95282) is a potent selective brain-penetrating histamine H2-receptor antagonist. Br J Pharmacol 93(1):69–78

    PubMed  CAS  Google Scholar 

  • Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2001) Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 13(1):68–78

    Article  PubMed  CAS  Google Scholar 

  • Chen Z (2000) Effect of histamine H3-receptor antagonist clobenpropit on spatial memory of radial maze performance in rats. Acta Pharmacol Sin 21(10):905–910

    PubMed  CAS  Google Scholar 

  • Dai H, Kaneko K, Kato H, Fujii S, Jing Y, Xu A, Sakurai E, Kato M, Okamura N, Kuramasu A, Yanai K (2007) Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci Res 57(2):306–313

    Article  PubMed  CAS  Google Scholar 

  • Elrod K, Buccafusco JJ (1988) An evaluation of the mechanism of scopolamine-induced impairment in two passive avoidance protocols. Pharmacol Biochem Behav 29(1):15–21

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Meliani K (1992) Effects of physostigmine and scopolamine on rats’ performances in object-recognition and radial-maze tests. Psychopharmacology (Berl) 109(3):321–330

    Article  CAS  Google Scholar 

  • Esbenshade TA, Fox GB, Krueger KM, Baranowski JL, Miller TR, Kang CH, Denny LI, Witte DG, Yao BB, Pan JB, Faghih R, Bennani YL, Williams M, Hancock AA (2004) Pharmacological and behavioral properties of A-349821, a selective and potent human histamine H3 receptor antagonist. Biochem Pharmacol 68(5):933–945

    Article  PubMed  CAS  Google Scholar 

  • Fox GB, Pan JB, Radek RJ, Lewis AM, Bitner RS, Esbenshade TA, Faghih R, Bennani YL, Williams M, Yao BB, Decker MW, Hancock AA (2003) Two novel and selective nonimidazole H3 receptor antagonists A-304121 and A-317920: II. In vivo behavioral and neurophysiological characterization. J Pharmacol Exp Ther 3:897–908

    Article  Google Scholar 

  • Farzin D, Asghari L, Nowrouzi M (2002) Rodent antinociception following acute treatment with different histamine receptor agonists and antagonists. Pharmacol Biochem Behav 72(3):751–760

    Article  PubMed  CAS  Google Scholar 

  • Ghi P, Orsetti M, Gamalero SR, Ferretti C (1999) Sex differences in memory performance in the object recognition test. Possible role of histamine receptors. Pharmacol Biochem Behav 64(4):761–766

    Article  PubMed  CAS  Google Scholar 

  • Giovannini MG, Bartolini L, Bacciottini L, Greco L, Blandina P (1999) Effects of histamine H3 receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia. Behav Brain Res 104(1–2):147–155

    Article  PubMed  CAS  Google Scholar 

  • Hancock AA, Fox GB (2004) Perspectives on cognitive domains, H3 receptor ligands and neurological disease. Expert Opin Investig Drugs 13(10):1237–1248

    Article  PubMed  CAS  Google Scholar 

  • Haas HL (1992) Electrophysiology of histamine receptors. In: Schwartz JC, Haas HL (eds) The histamine receptor. Wiley-Liss, New York, pp 161–171

    Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121–130

    Article  PubMed  CAS  Google Scholar 

  • Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    PubMed  CAS  Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49(3):253–278

    PubMed  CAS  Google Scholar 

  • Huang ZL, Mochizuki T, Qu WM, Hong ZY, Watanabe T, Urade Y, Hayaishi O (2006) Altered sleep–wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc Natl Acad Sci U S A 103(12):4687–4692

    Article  PubMed  CAS  Google Scholar 

  • Huston JP, Wagner U, Hasenöhrl RU (1997) The tuberomammillary nucleus projections in the control of learning, memory and reinforcement processes: evidence for an inhibitory role. Behav Brain Res 83(1–2):97–105

    Article  PubMed  CAS  Google Scholar 

  • King MV, Sleight AJ, Woolley ML, Topham IA, Marsden CA, Fone KC (2004) 5-HT6 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation—an effect sensitive to NMDA receptor antagonism. Neuropharmacology 47(2):195–204

    Article  PubMed  CAS  Google Scholar 

  • Ko EM, Estabrooke IV, McCarthy M, Scammell TE (2003) Wake-related activity of tuberomammillary neurons in rats. Brain Res 992(2):220–226

    Article  PubMed  CAS  Google Scholar 

  • Komater VA, Buckley MJ, Browman KE, Pan JB, Hancock AA, Decker MW, Fox GB (2005) Effects of histamine H3 receptor antagonists in two models of spatial learning. Behav Brain Res 159(2):295–300

    Article  PubMed  CAS  Google Scholar 

  • Lebrun C, Pillière E, Lestage P (2000) Effects of S 18986-1, a novel cognitive enhancer, on memory performances in an object recognition task in rats. Eur J Pharmacol 401(2):205–212

    Article  PubMed  CAS  Google Scholar 

  • Ligneau X, Lin J, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, Stark H, Elz S, Schunack W, Schwartz J (1998) Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J Pharmacol Exp Ther 287(2):658–666

    PubMed  CAS  Google Scholar 

  • Ligneau X, Perrin D, Landais L, Camelin JC, Calmels TP, Berrebi-Bertrand I, Lecomte JM, Parmentier R, Anaclet C, Lin JS, Bertaina-Anglade V, la Rochelle CD, d'Aniello F, Rouleau A, Gbahou F, Arrang JM, Ganellin CR, Stark H, Schunack W, Schwartz JC (2007) BF2.649 [1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J Pharmacol Exp Ther 320(1):365–375

    Article  PubMed  CAS  Google Scholar 

  • Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4(5):471–503

    Article  PubMed  CAS  Google Scholar 

  • Lin JS, Sakai K, Vanni-Mercier G, Arrang JM, Garbarg M, Schwartz JC, Jouvet M (1990) Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat. Brain Res 523(2):325–330

    Article  PubMed  CAS  Google Scholar 

  • Malmberg-Aiello P, Ipponi A, Blandina P, Bartolini L, Schunack W (2003) Pro-cognitive effect of a selective histamine H1-receptor agonist, 2-(3-trifluoromethylphenyl)histamine, in the rat object recognition test. Inflamm Res 52(Suppl 1):S33–S34

    Article  PubMed  CAS  Google Scholar 

  • Moser PC, Bergis OE, Scatton B (2002) SL65.0155, a novel 5-hydroxytryptamine 4 receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther 302(2):731–741

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Imaizumi M, Onodera K (1995) Ameliorating effects of histidine on learning deficits in an elevated plus-maze test in mice and the contribution of cholinergic neuronal systems. Methods Find Exp Clin Pharmacol 17(Suppl C):57–63

    PubMed  CAS  Google Scholar 

  • Miyazaki S, Onodera K, Imaizumi M, Timmerman H (1997) Effects of clobenpropit (VUF-9153), a histamine H3-receptor antagonist, on learning and memory, and on cholinergic and monoaminergic systems in mice. Life Sci 61(4):355–361

    Article  PubMed  CAS  Google Scholar 

  • Onodera K, Miyazaki S, Imaizumi M, Stark H, Schunack W (1998) Improvement by FUB 181, a novel histamine H3-receptor antagonist, of learning and memory in the elevated plus-maze test in mice. Naunyn Schmiedebergs Arch Pharmacol 357(5):508–513

    Article  PubMed  CAS  Google Scholar 

  • Orsetti M, Ghi P, Di Carlo G (2001) Histamine H(3)-receptor antagonism improves memory retention and reverses the cognitive deficit induced by scopolamine in a two-trial place recognition task. Behav Brain Res 124(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Orsetti M, Ferretti C, Gamalero R, Ghi P (2002) Histamine H3-receptor blockade in the rat nucleus basalis magnocellularis improves place recognition memory. Psychopharmacology (Berl) 159(2):133–137

    Article  CAS  Google Scholar 

  • Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81(8):2572–2576

    Article  PubMed  CAS  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci 22(17):7695–7711

    PubMed  CAS  Google Scholar 

  • Parmentier R, Anaclet, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Ohtsu H, Williams M, Lin JS (2007) The brain H3-receptor as a novel therapeutic target for vigilance and sleep–wake disorders. Biochem Pharmacol 73:1157–1171

    Article  PubMed  CAS  Google Scholar 

  • Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2000) Central histaminergic system and cognition. Neurosci Biobehav Rev 24(1):107–113

    Article  PubMed  CAS  Google Scholar 

  • Passani MB, Cangioli I, Baldi E, Bucherelli C, Mannaioni PF, Blandina P (2001) Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 14(9):1522–1532

    Article  PubMed  CAS  Google Scholar 

  • Passani MB, Lin JS, Hancock A, Crochet S, Blandina P (2004) The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 25(12):618–625

    Article  PubMed  CAS  Google Scholar 

  • Pollard H, Bouthenet ML (1992) Autoradiographic visualization of the three histamine receptor subtypes in the brain. In: Schwartz JC, Haas HL (eds) The histamine Receptor. Wiley-Liss, New York, pp 179–192

    Google Scholar 

  • Prast H, Argyriou A, Philippu A (1996) Histaminergic neurons facilitate social memory in rats. Brain Res 734(1–2):316–318

    Article  PubMed  CAS  Google Scholar 

  • Rouleau A, Ligneau X, Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM (2002) Histamine H3-receptor-mediated [35S]GTP gamma[S] binding: evidence for constitutive activity of the recombinant and native rat and human H3 receptors. Br J Pharmacol 135(2):383–392

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (1985) Noradrenergic modulation of selective attention: its role in memory retrieval. Ann N Y Acad Sci 444:178–193

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7(2):73–84

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak R (1995) Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep 18(6):478–500

    PubMed  CAS  Google Scholar 

  • Tashiro M, Mochizuki H, Iwabuchi K, Sakurada Y, Itoh M, Watanabe T, Yanai K (2002) Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain. Life Sci 72(4–5):409–414

    Article  PubMed  CAS  Google Scholar 

  • Van der Werf JF, Timmerman H (1989) The histamine H3 receptor: a general presynaptic histaminergic regulatory system. Trends Pharmacol Sci 10(4):159–162

    Article  PubMed  Google Scholar 

  • Vohora D (2004) Histamine-selective H3 receptor ligands and cognitive functions: an overview. IDrugs 7(7):667–673

    PubMed  CAS  Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 95(1):13–25

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dominique Schweizer from the Cephalon France Medicinal Chemistry Department who synthesised ciproxifan. Thanks to View Point for developing the video monitoring system used in the NOD task with us. Cephalon Inc. supported this study. We are also grateful to Peter Vanhoutte, Denis Hervé, Jocelyne Caboche, Donna Bozyczko-Coyne, Christopher Heath and Michael Williams for the critical reading of the manuscript. Experiments were done in strict compliance with the recommendations of the EEC (86/609/CEE) for the care and use of laboratory animals and were approved by the Animal Care Committee of Cephalon France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Pascoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascoli, V., Boer-Saccomani, C. & Hermant, JF. H3 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing retrieval. Psychopharmacology 202, 141–152 (2009). https://doi.org/10.1007/s00213-008-1171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1171-2

Keywords

Navigation