Skip to main content

Advertisement

Log in

Alterations in tryptophan and purine metabolism in cocaine addiction: a metabolomic study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Mapping metabolic “signatures” can provide new insights into addictive mechanisms and potentially identify biomarkers and therapeutic targets.

Objective

We examined the differences in metabolites related to the tyrosine, tryptophan, purine, and oxidative stress pathways between cocaine-dependent subjects and healthy controls. Several of these metabolites serve as biological indices underlying the mechanisms of reinforcement, toxicity, and oxidative stress.

Methods

Metabolomic analysis was performed in 18 DSM-IV-diagnosed cocaine-dependent individuals with at least 2 weeks of abstinence and ten drug-free controls. Plasma concentrations of 37 known metabolites were analyzed and compared using a liquid chromatography electrochemical array platform. Multivariate analyses were used to study the relationship between severity of drug use [Addiction Severity Index (ASI) scores] and biological measures.

Results

Cocaine subjects showed significantly higher levels of n-methylserotonin (p < 0.0017) and guanine (p < 0.0031) and lower concentrations of hypoxanthine (p < 0.0002), anthranilate (p < 0.0024), and xanthine (p < 0.012), compared to controls. Multivariate analyses showed that a combination of n-methylserotonin and xanthine contributed to 73% of the variance in predicting the ASI scores (p < 0.0001). Logistic regression showed that a model combining n-methylserotonin, xanthine, xanthosine, and guanine differentiated cocaine and control groups with no overlap.

Conclusions

Alterations in the methylation processes in the serotonin pathways and purine metabolism seem to be associated with chronic exposure to cocaine. Given the preliminary nature and cross-sectional design of the study, the findings need to be confirmed in larger samples of cocaine-dependent subjects, preferably in a longitudinal design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhisaroglu M, Ahmed R, Kurtuncu M, Manev H, Uz T (2004) Diurnal rhythms in cocaine sensitization and in Period1 levels are common across rodent species. Pharmacol Biochem Behav 79:37–42

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J (1962) The enzymatic N-methylation of serotonin and other amines. J Pharmacol Exp Ther 138:28–33

    PubMed  CAS  Google Scholar 

  • Beck A, Steer R (1987) Manual for the Beck Depression Inventory. Psychological Corporation, San Antonio

    Google Scholar 

  • Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS et al (2008) Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 131:389–396

    Article  PubMed  Google Scholar 

  • Burmeister JJ, Lungren EM, Neisewander JL (2003) Effects of fluoxetine and d-fenfluramine on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 168:146–154

    Article  CAS  Google Scholar 

  • Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94:20–24

    Article  PubMed  CAS  Google Scholar 

  • Buydens-Branchey L, Branchey M, Fergeson P, Hudson J, McKernin C (1997) The meta-chlorophenylpiperazine challenge test in cocaine addicts: hormonal and psychological responses. Biol Psychiatry 41:1071–1086

    Article  PubMed  CAS  Google Scholar 

  • Buydens-Branchey L, Branchey M, Hudson J, Rothman M, Fergeson P, McKernin C (1999) Serotonergic function in cocaine addicts: prolactin responses to sequential D, L-fenfluramine challenges. Biol Psychiatry 45:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Beilstein M, Xu YH, Turner TJ, Moratalla R, Standaert DG et al (2000) Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A(2A) adenosine receptors. Neuroscience 97:195–204

    Article  PubMed  CAS  Google Scholar 

  • Chilton WS, Bigwood J, Jensen RE (1979) Psilocin, bufotenine and serotonin: historical and biosynthetic observations. J Psychedelic Drugs 11:61–69

    PubMed  CAS  Google Scholar 

  • Engblom D, Bilbao A, Sanchis-Segura C, Dahan L, Perreau-Lenz S, Balland B et al (2008) Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron 59:497–508

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1997) Structured clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV). American Psychiatric Press, Washington

    Google Scholar 

  • Hall FS, Sora I, Drgonova J, Li XF, Goeb M, Uhl GR (2004) Molecular mechanisms underlying the rewarding effects of cocaine. Ann N Y Acad Sci 1025:47–56

    Article  PubMed  CAS  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning data mining inference and prediction. Springer, Berlin

  • Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 86:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Hitt M, Ettinger DD (1986) Toad toxicity. N Engl J Med 314:1517–1518

    PubMed  CAS  Google Scholar 

  • Isabelle M, Vergeade A, Moritz F, Dautreaux B, Henry JP, Lallemand F et al (2007) NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. J Mol Cell Cardiol 42:326–332

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LK, Staley JK, Malison RT, Zoghbi SS, Seibyl JP, Kosten TR et al (2000) Elevated central serotonin transporter binding availability in acutely abstinent cocaine-dependent patients. Am J Psychiatry 157:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk R, Krishnan KR. Metabolomics (2009) A global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology 34(1):173–186

  • Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM et al (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12:934–945

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Karp NA, McCormick PS, Russell MR, Lilley KS (2007) Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol Cell Proteomics 6:1354–1364

    Article  PubMed  CAS  Google Scholar 

  • Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64:350–356

    Article  PubMed  CAS  Google Scholar 

  • Karch SB (2006) Drug abuse handbook, 2nd edn. CRC, New York, pp 354–357

    Google Scholar 

  • Kristal BS, Vigneau-Callahan KE, Matson WR (1998) Simultaneous analysis of the majority of low-molecular-weight, redox-active compounds from mitochondria. Anal Biochem 263:18–25

    Article  PubMed  CAS  Google Scholar 

  • Kristal BS, Vigneau-Callahan KE, Moskowitz AJ, Matson WR (1999) Purine catabolism: links to mitochondrial respiration and antioxidant defenses? Arch Biochem Biophys 370:22–33

    Article  PubMed  CAS  Google Scholar 

  • Kristal BS, Shurubor YI, Kaddurah-Daouk R, Matson WR (2007) High-performance liquid chromatography separations coupled with coulometric electrode array detectors: a unique approach to metabolomics. Methods Mol Biol 358:159–174

    Article  PubMed  CAS  Google Scholar 

  • Lara DR, Dall'Igna OP, Ghisolfi ES, Brunstein MG (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30:617–629

    Article  PubMed  CAS  Google Scholar 

  • Lipton JW, Gyawali S, Borys ED, Koprich JB, Ptaszny M, McGuire SO (2003) Prenatal cocaine administration increases glutathione and alpha-tocopherol oxidation in fetal rat brain. Brain Res Dev Brain Res 147:77–84

    Article  PubMed  CAS  Google Scholar 

  • Little KY, McLaughlin DP, Zhang L, Livermore CS, Dalack GW, McFinton PR et al (1998) Cocaine, ethanol, and genotype effects on human midbrain serotonin transporter binding sites and mRNA levels. Am J Psychiatry 155:207–213

    PubMed  CAS  Google Scholar 

  • McBride MC (2000) Bufotenine: toward an understanding of possible psychoactive mechanisms. J Psychoactive Drugs 32:321–331

    PubMed  CAS  Google Scholar 

  • McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G et al (1992) The fifth edition of the Addiction Severity Index. J Subst Abuse Treat 9:199–213

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kaneko S (2008) Neuropsychotoxicity of abused drugs: molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3, 4-methylenedioxymethamphetamine (ecstasy), and 5-methoxy-N, N-diisopropyltryptamine (foxy). J Pharmacol Sci 106:2–8

    Article  PubMed  CAS  Google Scholar 

  • Oleson EB, Talluri S, Childers SR, Smith JE, Roberts DC, Bonin KD et al (2009) Dopamine uptake changes associated with cocaine self-administration. Neuropsychopharmacology 34:1174–1184

    Google Scholar 

  • Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC (2007) A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 22:418–423

    Article  PubMed  Google Scholar 

  • Patkar AA, Gottheil E, Berrettini WH, Thornton CC, Hill KP, Weinstein SP (2003) Relationship between platelet serotonin uptake sites and treatment outcome among African-American cocaine dependent individuals. J Addict Dis 22:79–92

    Article  PubMed  Google Scholar 

  • Patkar AA, Mannelli P, Peindl K, Hill KP, Gopalakrishnan R, Berrettini WH (2006) Relationship of disinhibition and aggression to blunted prolactin response to meta-chlorophenylpiperazine in cocaine-dependent patients. Psychopharmacology (Berl) 185:123–132

    Article  CAS  Google Scholar 

  • Patkar AA, Mannelli P, Peindl K, Hill KP, Wu LT, Lee T et al (2008) Relationship of the serotonin transporter with prolactin response to meta-chlorophenylpiperazine in cocaine dependence. J Psychiatr Res 42:1213–1219

    Article  PubMed  Google Scholar 

  • Przegalinski E, Czepiel K, Nowak E, Dlaboga D, Filip M (2003) Withdrawal from chronic cocaine up-regulates 5-HT1B receptors in the rat brain. Neurosci Lett 351:169–172

    Article  PubMed  CAS  Google Scholar 

  • Puig JG, Mateos FA, Miranda ME, Torres RJ, de Miguel E, Perez de Ayala C et al (1994) Purine metabolism in women with primary gout. Am J Med 97:332–338

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, Beecher C et al (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108

    Article  PubMed  CAS  Google Scholar 

  • Sharan N, Chong VZ, Nair VD, Mishra RK, Hayes RJ, Gardner EL (2003) Cocaine treatment increases expression of a 40 kDa catecholamine-regulated protein in discrete brain regions. Synapse 47:33–44

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Palmer CP (2002) Effect of pendent group structures on the chemical selectivity and performance of sulfonated copolymers as novel pseudophases in electrokinetic chromatography. Electrophoresis 23:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Storey JD (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 31:2013–2035

    Article  Google Scholar 

  • Takeda N, Ikeda R, Ohba K, Kondo M (1995) Bufotenine reconsidered as a diagnostic indicator of psychiatric disorders. Neuroreport 6:2378–2380

    Article  PubMed  CAS  Google Scholar 

  • Tsai SJ (2005) Adenosine A2a receptor/dopamine D2 receptor hetero-oligomerization: a hypothesis that may explain behavioral sensitization to psychostimulants and schizophrenia. Med Hypotheses 64:197–200

    Article  PubMed  CAS  Google Scholar 

  • Uz T, Ahmed R, Akhisaroglu M, Kurtuncu M, Imbesi M, Dirim Arslan A et al (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, Berlin

  • Vianna EP, Ferreira AT, Naffah-Mazzacoratti MG, Sanabria ER, Funke M, Cavalheiro EA et al (2002) Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: fluorimetric, immunohistochemical, and Western blot studies. Epilepsia 43(Suppl 5):227–229

    Article  PubMed  CAS  Google Scholar 

  • Vigneau-Callahan KE, Shestopalov AI, Milbury PE, Matson WR (2001) Kristal BS Characterization of diet-dependent metabolic serotypes: analytical and biological variability issues in rats. J Nutr 131:924S–932S

    PubMed  CAS  Google Scholar 

  • Yao JK, Reddy RD (2005) Metabolic investigation in psychiatric disorders. Mol Neurobiol 31:193–203

    Article  PubMed  CAS  Google Scholar 

  • Yu RC, Lee TC, Wang TC, Li JH (1999) Genetic toxicity of cocaine. Carcinogenesis 20:1193–1199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants DA00340 and DA015504 to AAP from the National Institute on Drug Abuse and also with funding from National Institutes of Health grants R24 GM078233, “The Metabolomics Research Network” (R.K.-D.), SMRI (R.K.-D.), NARSAD (R.K.-D.), and R01 NS054008-01A2, (R.K.-D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashwin A. Patkar or Rima Kaddurah-Daouk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patkar, A.A., Rozen, S., Mannelli, P. et al. Alterations in tryptophan and purine metabolism in cocaine addiction: a metabolomic study. Psychopharmacology 206, 479–489 (2009). https://doi.org/10.1007/s00213-009-1625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1625-1

Keywords

Navigation