Skip to main content
Log in

Higher striatal dopamine transporter density in PTSD: an in vivo SPECT study with [99mTc]TRODAT-1

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Some evidence suggests a hyperdopaminergic state in posttraumatic stress disorder (PTSD). The 9-repetition allele (9R) located in the 3′ untranslated region of the dopamine transporter (DAT) gene (SLC6A3) is more frequent among PTSD patients. In vivo molecular imaging studies have shown that healthy 9R carriers have increased striatal DAT binding. However, no prior study evaluated in vivo striatal DAT density in PTSD.

Objectives

The objective of this study was to evaluate in vivo striatal DAT density in PTSD.

Methods

Twenty-one PTSD subjects and 21 control subjects, who were traumatized but asymptomatic, closely matched comparison subjects evaluated with the Clinician-Administered PTSD Scale underwent a single-photon emission computed tomography scan with [99mTC]-TRODAT-1. DAT binding potential (DAT-BP) was calculated using the striatum as the region of the interest and the occipital cortex as a reference region.

Results

PTSD patients had greater bilateral striatal DAT-BP (mean ± SD; left, 1.80 ± 0.42; right, 1.78 ± 0.40) than traumatized control subjects (left, 1.62 ± 0.32; right, 1.61 ± 0.31; p = 0.039 for the left striatum and p = 0.032 for the right striatum).

Conclusions

These results provide the first in vivo evidence for increased DAT density in PTSD. Increases in DAT density may reflect higher dopamine turnover in PTSD, which could contribute to the perpetuation and potentiation of exaggerated fear responses to a given event associated with the traumatic experience. Situations that resemble the traumatic event turn to be interpreted as highly salient (driving attention, arousal, and motivation) in detriment of other daily situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acton PD, Meyer PT, Mozley PD, Plössl K, Kung HF (2000) Simplified quantification of dopamine transporters in humans using [99mTc]TRODAT-1 and single-photon emission tomography. Eur J Nucl Med 27:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2004) Diagnostic and Statistical Manual of Mental Disorders–DSM-IV, 4th edn. American Psychiatric Association, Washington D.C

    Google Scholar 

  • Andreoli SB, Ribeiro WS, Quintana MI, Guindalini C, Breen G, Blay SL, Coutinho ES, Harpham T, Jorge MR, Lara DR, Moriyama TS, Quarantini LC, Gadelha A, Vilete LM, Yeh MS, Prince M, Figueira I, Bressan RA, Mello MF, Dewey ME, Ferri CP, Mari JeJ (2009) Violence and post-traumatic stress disorder in Sao Paulo and Rio de Janeiro, Brazil: the protocol for an epidemiological and genetic survey. BMC Psychiatry 9:34

    Article  PubMed  Google Scholar 

  • Argyelán M, Szabó Z, Kanyó B, Tanács A, Kovács Z, Janka Z, Pávics L (2005) Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J Affect Disord 89:115–123

    Article  PubMed  Google Scholar 

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  PubMed  CAS  Google Scholar 

  • Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56:893–897

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Borowski TB, Kokkinidis L (1998) The effects of cocaine, amphetamine, and the dopamine D1 receptor agonist SKF 38393 on fear extinction as measured with potentiated startle: implications for psychomotor stimulant psychosis. Behav Neurosci 112:952–965

    Article  PubMed  CAS  Google Scholar 

  • Breslau N, Davis GC, Peterson EL, Schultz L (1997) Psychiatric sequelae of posttraumatic stress disorder in women. Arch Gen Psychiatry 54:81–87

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Shih MC, Hoexter MQ, Lacerda AL (2007) Can molecular imaging techniques identify biomarkers for neuropsychiatric disorders? Rev Bras Psiquiatr 29:102–104

    PubMed  Google Scholar 

  • Bressan RA, Quarantini LC, Andreoli SB, Araújo C, Breen G, Guindalini C, Hoexter M, Jackowski AP, Jorge MR, Lacerda AL, Lara DR, Malta S, Moriyama TS, Quintana MI, Ribeiro WS, Ruiz J, Schoedl AF, Shih MC, Figueira I, Koenen KC, Mello MF, Mari JJ (2009) The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence. BMC Psychiatry 9:30

    Article  PubMed  Google Scholar 

  • Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A (2003) Greater availability of brain dopamine transporters in major depression shown by [99 m Tc]TRODAT-1 SPECT imaging. Am J Psychiatry 160:1836–1841

    Article  PubMed  Google Scholar 

  • Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M (1993) Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 50:295–305

    Article  PubMed  CAS  Google Scholar 

  • Comings DE, Muhlmann D, Gysin R (1996) Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol Psychiatry 40:368–372

    Article  PubMed  CAS  Google Scholar 

  • Crits-Christoph P, Newberg A, Wintering N, Ploessl K, Gibbons MB, Ring-Kurtz S, Gallop R, Present J (2008) Dopamine transporter levels in cocaine dependent subjects. Drug Alcohol Depend 98:70–76

    Article  PubMed  CAS  Google Scholar 

  • De Bellis MD, Baum AS, Birmaher B, Keshavan MS, Eccard CH, Boring AM, Jenkins FJ, Ryan ND (1999) A.E. Bennett Research Award. Developmental traumatology. Part I: biological stress systems. Biol Psychiatry 45:1259–1270

    Article  PubMed  Google Scholar 

  • Dragan WL, Oniszczenko W (2009) The association between dopamine D4 receptor exon III polymorphism and intensity of PTSD symptoms among flood survivors. Anxiety Stress Coping 22:483–495

    Article  PubMed  Google Scholar 

  • Drury SS, Theall KP, Keats BJ, Scheeringa M (2009) The role of the dopamine transporter (DAT) in the development of PTSD in preschool children. J Trauma Stress 22:534–539

    PubMed  Google Scholar 

  • Elman I, Lowen S, Frederick BB, Chi W, Becerra L, Pitman RK (2009) Functional neuroimaging of reward circuitry responsivity to monetary gains and losses in posttraumatic stress disorder. Biol Psychiatry 66:1083–1090

    Article  PubMed  Google Scholar 

  • Felicio AC, Moriyama TS, Godeiro-Junior C, Shih MC, Hoexter MQ, Borges V, Silva SM, Amaro-Junior E, Andrade LA, Ferraz HB, Bressan RA (2010) Higher dopamine transporter density in Parkinson's disease patients with depression. Psychopharmacology (Berl) 211:27–31

    Article  CAS  Google Scholar 

  • Finlay JM, Zigmond MJ (1997) The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res 22:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • First M, Spitzer R, Gibbon M, Williams J (1997) Structured clinical interview for DSM-IV axis I disorders: clinical version (SCID CV). American Psychiatric Press, Washington DC

    Google Scholar 

  • Francati V, Vermetten E, Bremner JD (2007) Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depress Anxiety 24:202–218

    Article  PubMed  CAS  Google Scholar 

  • Fullerton CS, Ursano RJ, Epstein RS, Crowley B, Vance KL, Kao TC, Baum A (2000) Peritraumatic dissociation following motor vehicle accidents: relationship to prior trauma and prior major depression. J Nerv Ment Dis 188:267–272

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg K, Ein-Dor T, Solomon Z (2010) Comorbidity of posttraumatic stress disorder, anxiety and depression: a 20-year longitudinal study of war veterans. J Affect Disord 123:249–257

    Article  PubMed  Google Scholar 

  • Glover DA, Powers MB, Bergman L, Smits JA, Telch MJ, Stuber M (2003) Urinary dopamine and turn bias in traumatized women with and without PTSD symptoms. Behav Brain Res 144:137–141

    Article  PubMed  CAS  Google Scholar 

  • Hageman I, Andersen HS, Jorgensen MB (2001) Post-traumatic stress disorder: a review of psychobiology and pharmacotherapy. Acta Psychiatr Scand 104:411–422

    Article  PubMed  CAS  Google Scholar 

  • Hamner MB, Diamond BI (1993) Elevated plasma dopamine in posttraumatic stress disorder: a preliminary report. Biol Psychiatry 33:304–306

    Article  PubMed  CAS  Google Scholar 

  • Heim C, Nemeroff CB (2009) Neurobiology of posttraumatic stress disorder. CNS Spectr 14:13–24

    PubMed  Google Scholar 

  • Hopper JW, Pitman RK, Su Z, Heyman GM, Lasko NB, Macklin ML, Orr SP, Lukas SE, Elman I (2008) Probing reward function in posttraumatic stress disorder: expectancy and satisfaction with monetary gains and losses. J Psychiatr Res 42:802–807

    Article  PubMed  Google Scholar 

  • Inoue T, Tsuchiya K, Koyama T (1996) Effects of typical and atypical antipsychotic drugs on freezing behavior induced by conditioned fear. Pharmacol Biochem Behav 55:195–201

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LK, Staley JK, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB, Gelernter J (2000) Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 157:1700–1703

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LK, Southwick SM, Kosten TR (2001) Substance use disorders in patients with posttraumatic stress disorder: a review of the literature. Am J Psychiatry 158:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB (1995) Posttraumatic stress disorder in the national comorbidity survey. Arch Gen Psychiatry 52:1048–1060

    Article  PubMed  CAS  Google Scholar 

  • Kung HF, Kim HJ, Kung MP, Meegalla SK, Plössl K, Lee HK (1996) Imaging of dopamine transporters in humans with technetium-99 m TRODAT-1. Eur J Nucl Med 23:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Laasonen-Balk T, Kuikka J, Viinamäki H, Husso-Saastamoinen M, Lehtonen J, Tiihonen J (1999) Striatal dopamine transporter density in major depression. Psychopharmacology (Berl) 144:282–285

    Article  CAS  Google Scholar 

  • Lehto SM, Tolmunen T, Kuikka J, Valkonen-Korhonen M, Joensuu M, Saarinen PI, Vanninen R, Ahola P, Tiihonen J, Lehtonen J (2008) Midbrain serotonin and striatum dopamine transporter binding in double depression: a one-year follow-up study. Neurosci Lett 441:291–295

    Article  PubMed  CAS  Google Scholar 

  • Lemieux AM, Coe CL (1995) Abuse-related posttraumatic stress disorder: evidence for chronic neuroendocrine activation in women. Psychosom Med 57:105–115

    PubMed  CAS  Google Scholar 

  • Leviel V (2011) Dopamine release mediated by the dopamine transporter, facts and consequences. J Neurochem 118:475–489

    Article  PubMed  CAS  Google Scholar 

  • Malison RT, Best SE, van Dyck CH, McCance EF, Wallace EA, Laruelle M, Baldwin RM, Seibyl JP, Price LH, Kosten TR, Innis RB (1998) Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123I] beta-CIT SPECT. Am J Psychiatry 155:832–834

    PubMed  CAS  Google Scholar 

  • Meyer JH, Krüger S, Wilson AA, Christensen BK, Goulding VS, Schaffer A, Minifie C, Houle S, Hussey D, Kennedy SH (2001) Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12:4121–4125

    Article  PubMed  CAS  Google Scholar 

  • Morrow BA, Elsworth JD, Roth RH (1996) Tyrosine enhances behavioral and mesocorticolimbic dopaminergic responses to aversive conditioning. Synapse 22:100–105

    Article  PubMed  CAS  Google Scholar 

  • Mozley PD, Stubbs JB, Plössl K, Dresel SH, Barraclough ED, Alavi A, Araujo LI, Kung HF (1998) Biodistribution and dosimetry of TRODAT-1: a technetium-99 m tropane for imaging dopamine transporters. J Nucl Med 39:2069–2076

    PubMed  CAS  Google Scholar 

  • Neria Y, Besser A, Kiper D, Westphal M (2010) A longitudinal study of posttraumatic stress disorder, depression, and generalized anxiety disorder in Israeli civilians exposed to war trauma. J Trauma Stress 23:322–330

    Article  PubMed  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    Article  PubMed  CAS  Google Scholar 

  • Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11 C]raclopride. J Neurosci 24:2825–2831

    Article  PubMed  CAS  Google Scholar 

  • Pupo MC, Jorge MR, Schoedl AF, Bressan RA, Andreoli SB, Mello MF, de Jesus Mari J (2011) The accuracy of the Clinician-Administered PTSD Scale (CAPS) to identify PTSD cases in victims of urban violence. Psychiatry Res 185:157–160

    Article  PubMed  Google Scholar 

  • Sarchiapone M, Carli V, Camardese G, Cuomo C, Di Giuda D, Calcagni ML, Focacci C, De Risio S (2006) Dopamine transporter binding in depressed patients with anhedonia. Psychiatry Res 147:243–248

    Article  PubMed  CAS  Google Scholar 

  • Segman RH, Cooper-Kazaz R, Macciardi F, Goltser T, Halfon Y, Dobroborski T, Shalev AY (2002) Association between the dopamine transporter gene and posttraumatic stress disorder. Mol Psychiatry 7:903–907

    Article  PubMed  CAS  Google Scholar 

  • Sher L, Oquendo MA, Li S, Burke AK, Grunebaum MF, Zalsman G, Huang YY, Mann JJ (2005) Higher cerebrospinal fluid homovanillic acid levels in depressed patients with comorbid posttraumatic stress disorder. Eur Neuropsychopharmacol 15:203–209

    Article  PubMed  CAS  Google Scholar 

  • Shih MC, Franco de Andrade LA, Amaro E, Felicio AC, Ferraz HB, Wagner J, Hoexter MQ, Lin LF, Fu YK, Mari JJ, Tufik S, Bressan RA (2007) Higher nigrostriatal dopamine neuron loss in early than late onset Parkinson's disease?—a [99mTc]-TRODAT-1 SPECT study. Mov Disord 22:863–866

    Article  PubMed  Google Scholar 

  • Spivak B, Vered Y, Graff E, Blum I, Mester R, Weizman A (1999) Low platelet-poor plasma concentrations of serotonin in patients with combat-related posttraumatic stress disorder. Biol Psychiatry 45:840–845

    Article  PubMed  CAS  Google Scholar 

  • Valente NL, Vallada H, Cordeiro Q, Miguita K, Bressan RA, Andreoli SB, Mari JJ, Mello MF (2011) Candidate-gene approach in posttraumatic stress disorder after urban violence: association analysis of the genes encoding serotonin transporter, dopamine transporter, and BDNF. J Mol Neurosci 44:59–67

    Article  PubMed  CAS  Google Scholar 

  • van de Giessen E, de Win MM, Tanck MW, van den Brink W, Baas F, Booij J (2009) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med 50:45–52

    Article  PubMed  Google Scholar 

  • van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M, Baldwin RM, Innis RB, Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751

    PubMed  Google Scholar 

  • Weathers FW, Keane TM, Davidson JR (2001) Clinician-administered PTSD scale: a review of the first 10 years of research. Depress Anxiety 13:132–156

    Article  PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297

    Article  PubMed  CAS  Google Scholar 

  • Yang YK, Yeh TL, Yao WJ, Lee IH, Chen PS, Chiu NT, Lu RB (2008) Greater availability of dopamine transporters in patients with major depression—a dual-isotope SPECT study. Psychiatry Res 162:230–235

    Article  PubMed  CAS  Google Scholar 

  • Yehuda R, Southwick S, Giller EL, Ma X, Mason JW (1992) Urinary catecholamine excretion and severity of PTSD symptoms in Vietnam combat veterans. J Nerv Ment Dis 180:321–325

    Article  PubMed  CAS  Google Scholar 

  • Young RM, Lawford BR, Noble EP, Kann B, Wilkie A, Ritchie T, Arnold L, Shadforth S (2002) Harmful drinking in military veterans with post-traumatic stress disorder: association with the D2 dopamine receptorA1 allele. Alcohol Alcohol 37:451–456

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study received financial support in the form of grants provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo) to Dr. Mari (grant: 2004/15039-0) and from Instituto do Cérebro, Instituto de Ensino e Pesquisa do Hospital Israelita Albert Einstein to Dr. Bressan (grant: 148-06). This work was presented at the 65th Annual Meeting of the Society of Biological Psychiatry, May 20–22 in New Orleans, LA, USA.

Conflicts of interest

Drs. Hoexter, Fadel, Felício, Calzavara, Batista, Reis, Shih, Pitman, Andreoli, Mello, and Mari have declared no conflict of interest. Dr. Bressan has received honoraria and/or consultations fees from Astra Zeneca, Bristol, Janssen, and Lundbeck; has received research funding from Janssen, Eli Lilly, Lundbeck, Novartis, and Roche; and is a shareholder of Biomolecular Technology Ltda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Q. Hoexter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoexter, M.Q., Fadel, G., Felício, A.C. et al. Higher striatal dopamine transporter density in PTSD: an in vivo SPECT study with [99mTc]TRODAT-1. Psychopharmacology 224, 337–345 (2012). https://doi.org/10.1007/s00213-012-2755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2755-4

Keywords

Navigation