Skip to main content

Advertisement

Log in

Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rational

Studies have shown the involvement of angiotensin II (Ang II) in neurobehavioral aspects, but the exact role of Ang II in memory is still ambiguous.

Objective

This study explored the effect of central Ang II on spatial memory along with cholinergic neurotransmission, brain energy metabolism, cerebral blood flow (CBF), and brain-derived neurotrophic factor (BDNF) in rats.

Methods

Spatial memory was evaluated by Morris water maze (MWM) after Ang II (ICV) administration in male Sprague–Dawley rats. CBF was measured by laser Doppler flowmetry. Oxidative stress adenosine triphosphate (ATP), BDNF, acetylcholinesterase (AChE), and acetylcholine (ACh) were estimated in the cortex and hippocampus at 1, 24, and 48 h after Ang II administration. The effect of AT1 and AT2 receptor blocker (candesartan and PD123,319, respectively), AChE inhibitor (donepezil), and antioxidant melatonin was studied on memory, CBF, and biochemical parameters.

Results

Ang II caused spatial memory impairment by affecting acquisition, consolidation, and recall in the MWM test along with a significant reduction in CBF. Ang II significantly reduced ACh level and caused oxidative stress in the rat brain 1 h post-injection. No significant change was observed in BDNF, AChE, and ATP level. Candesartan and donepezil prevented Ang II-induced memory impairment, reduction in CBF and ACh level. However, PD123,319 and melatonin failed to prevent Ang II-induced memory impairment but improved CBF partially.

Conclusion

This study suggests that Ang II, via the AT1 receptor, affects spatial memory formation, CBF, and ACh level while AT2 receptor has no significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56:779–787

    Article  PubMed  CAS  Google Scholar 

  • Arregui A, Perry EK, Rossor M, Tomlinson BE (1982) Angiotensin converting enzyme in Alzheimer’s disease increased activity in caudate nucleus and cortical areas. J Neurochem 38:1490–1492

    Article  PubMed  CAS  Google Scholar 

  • Awasthi H, Tota S, Hanif K, Nath C, Shukla R (2010) Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci 86:87–94

    Article  PubMed  CAS  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Naylor RJ (1989) Angiotensin II inhibits the release of [3H]acetylcholine from rat entorhinal cortex in vitro. Brain Res 491:136–143

    Article  PubMed  CAS  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Ironside JW, Naylor RJ, Williams TJ (1990) Angiotensin II inhibits cortical cholinergic function: implications for cognition. J Cardiovasc Pharmacol 16:234–238

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  PubMed  CAS  Google Scholar 

  • Bonini JS, Bevilaqua LR, Zinn CG, Kerr DS, Medina JH, Izquierdo I, Cammarota M (2006) Angiotensin II disrupts inhibitory avoidance memory retrieval. Horm Behav 50:308–313

    Article  PubMed  CAS  Google Scholar 

  • Braszko JJ (2002) AT(2) but not AT(1) receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 131:79–86

    Article  PubMed  CAS  Google Scholar 

  • Braszko JJ, Wisniewski K (1988) Effect of angiotensin II and saralasin on motor activity and the passive avoidance behavior of rats. Peptides 9:475–479

    Article  PubMed  CAS  Google Scholar 

  • Chan SH, Wu CW, Chang AY, Hsu KS, Chan JY (2011) Transcriptional upregulation of brain-derived neurotrophic factor in rostral ventrolateral medulla by angiotensin II: significance in superoxide homeostasis and neural regulation of arterial pressure. Circ Res 107:1127–1139

    Article  Google Scholar 

  • de Souza FA, Sanchis-Segura C, Fukada SY, de Bortoli VC, Zangrossi H Jr, de Oliveira AM (2004) Intracerebroventricular effects of angiotensin II on a step-through passive avoidance task in rats. Neurobiol Learn Mem 81:100–103

    Article  PubMed  Google Scholar 

  • Ernfors P, Bramham CR (2003) The coupling of a trkB tyrosine residue to LTP. Trends Neurosci 26:171–173

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Felix D, Celio MR, Inagami T (1980) Angiotensin II in the hippocampus. A histochemical and electrophysiological study. Experientia 36:1394–1395

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  PubMed  CAS  Google Scholar 

  • Hou DR, Wang Y, Zhou L, Chen K, Tian Y, Song Z, Bao J, Yang QD (2008) Altered angiotensin-converting enzyme and its effects on the brain in a rat model of Alzheimer disease. Chin Med J (Engl) 121:2320–2323

    CAS  Google Scholar 

  • Inaba S, Iwai M, Furuno M, Tomono Y, Kanno H, Senba I, Okayama H, Mogi M, Higaki J, Horiuchi M (2009) Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice. Hypertension 53:356–362

    Article  PubMed  CAS  Google Scholar 

  • Jing F, Mogi M, Sakata A, Iwanami J, Tsukuda K, Ohshima K, Min LJ, Steckelings UM, Unger T, Dahlof B, Horiuchi M (2012) Direct stimulation of angiotensin II type 2 receptor enhances spatial memory. J Cereb Blood Flow Metab 32:248–255

    Article  PubMed  CAS  Google Scholar 

  • Kerr DS, Bevilaqua LR, Bonini JS, Rossato JI, Kohler CA, Medina JH, Izquierdo I, Cammarota M (2005) Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism. Psychopharmacology (Berl) 179:529–535

    Article  CAS  Google Scholar 

  • Kramar EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, Wright JW (2001) The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 897:114–121

    Article  PubMed  CAS  Google Scholar 

  • Kume K, Hanyu H, Sakurai H, Takada Y, Onuma T, Iwamoto T (2012) Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer’s disease. Geriatr Gerontol Int 12:207–214

    Article  PubMed  Google Scholar 

  • Mattson MP, Duan W, Wan R, Guo Z (2004) Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx 1:111–116

    Article  PubMed  Google Scholar 

  • Miners S, Ashby E, Baig S, Harrison R, Tayler H, Speedy E, Prince JA, Love S, Kehoe PG (2009) Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res 1:163–177

    PubMed  CAS  Google Scholar 

  • Miners JS, van Helmond Z, Kehoe PG, Love S (2010) Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol 20:794–802

    Article  PubMed  CAS  Google Scholar 

  • Pachauri SD, Tota S, Khandelwal K, Verma PR, Nath C, Hanif K, Shukla R, Saxena JK, Dwivedi AK (2012) Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: a behavioral, biochemical and cerebral blood flow study. J Ethnopharmacol 139:34–41

    Article  PubMed  Google Scholar 

  • Radaideh GA, Choueiry P, Ismail A, Eid E, Berrou JP, Sedefdjian A, Sevenier F, Pathak A (2011) Eprosartan-based hypertension therapy, systolic arterial blood pressure and cognitive function: analysis of Middle East data from the OSCAR study. Vasc Health Risk Manag 7:491–495

    Article  PubMed  CAS  Google Scholar 

  • Rex CS, Lauterborn JC, Lin CY, Kramar EA, Rogers GA, Gall CM, Lynch G (2006) Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 96:677–685

    Article  PubMed  CAS  Google Scholar 

  • Richter-Levin G (2004) The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist 10:31–39

    Article  PubMed  Google Scholar 

  • Sabayan B, Jansen S, Oleksik AM, van Osch MJ, van Buchem MA, van Vliet P, de Craen AJ, Westendorp RG (2012) Cerebrovascular hemodynamics in Alzheimer’s disease and vascular dementia: a meta-analysis of transcranial Doppler studies. Ageing Res Rev 11:271–277

    Article  PubMed  Google Scholar 

  • Savaskan E, Hock C, Olivieri G, Bruttel S, Rosenberg C, Hulette C, Muller-Spahn F (2001) Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol Aging 22:541–546

    Article  PubMed  CAS  Google Scholar 

  • Saxby BK, Harrington F, Wesnes KA, McKeith IG, Ford GA (2008) Candesartan and cognitive decline in older patients with hypertension: a substudy of the SCOPE trial. Neurology 70:1858–1866

    Article  PubMed  CAS  Google Scholar 

  • Saxena G, Bharti S, Kamat PK, Sharma S, Nath C (2010) Melatonin alleviates memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pharmacol Biochem Behav 94:397–403

    Article  PubMed  CAS  Google Scholar 

  • Sirett NE, Bray JJ, Hubbard JI (1981) Localization of immunoreactive angiotensin II in the hippocampus and striatum of rat brain. Brain Res 217:405–411

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nadasy GL, Turu G, Supeki K, Szidonya L, Buday L, Chaplin T, Clark AJ, Hunyady L (2011) Angiotensin II-induced expression of brain-derived neurotrophic factor in human and rat adrenocortical cells. Endocrinology 151:1695–1703

    Article  Google Scholar 

  • Tota S, Kamat PK, Awasthi H, Singh N, Raghubir R, Nath C, Hanif K (2009) Candesartan improves memory decline in mice: involvement of AT1 receptors in memory deficit induced by intracerebral streptozotocin. Behav Brain Res 199:235–240

    Article  PubMed  CAS  Google Scholar 

  • Tota S, Awasthi H, Kamat PK, Nath C, Hanif K (2010) Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav Brain Res 209:73–79

    Article  PubMed  CAS  Google Scholar 

  • Tota S, Kamat PK, Shukla R, Nath C (2011) Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav Brain Res 221:207–215

    Article  PubMed  CAS  Google Scholar 

  • Tota S, Hanif K, Kamat PK, Najmi AK, Nath C (2012a) Role of central angiotensin receptors in scopolamine-induced impairment in memory, cerebral blood flow, and cholinergic function. Psychopharmacology (Berl) 222:185–202

    Article  CAS  Google Scholar 

  • Tota S, Kamat PK, Saxena G, Hanif K, Najmi AK, Nath C (2012b) Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats. Behav Brain Res 226:317–330

    Article  PubMed  CAS  Google Scholar 

  • Tota S, Nath C, Najmi AK, Shukla R, Hanif K (2012c) Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav Brain Res 232:66–76

    Article  PubMed  CAS  Google Scholar 

  • Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW (2001) Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22:1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Wright JW, Harding JW (1992) Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev 17:227–262

    Article  PubMed  CAS  Google Scholar 

  • Wright JW, Harding JW (2011) The brain RAS and Alzheimer’s disease. Exp Neurol 223:326–333

    Article  Google Scholar 

  • Wright JW, Miller-Wing AV, Shaffer MJ, Higginson C, Wright DE, Hanesworth JM, Harding JW (1993) Angiotensin II(3-8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res Bull 32:497–502

    Article  PubMed  CAS  Google Scholar 

  • Wyper D, Teasdale E, Patterson J, Montaldi D, Brown D, Hunter R, Graham D, McCulloch J (1993) Abnormalities in rCBF and computed tomography in patients with Alzheimer’s disease and in controls. Br J Radiol 66:23–27

    Article  PubMed  CAS  Google Scholar 

  • Yonkov DI, Georgiev VP (1990) Cholinergic influence on memory facilitation induced by angiotensin II in rats. Neuropeptides 16:157–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support to Santoshkumar Tota from the Council of Scientific and Industrial Research (CSIR) New Delhi, India, is gratefully acknowledged.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandishwar Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tota, S., Goel, R., Pachauri, S.D. et al. Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats. Psychopharmacology 226, 357–369 (2013). https://doi.org/10.1007/s00213-012-2913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2913-8

Keywords

Navigation