Skip to main content
Log in

Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Circadian disturbances are strongly linked with major depression. The circadian proteins CLOCK and BMAL1 are abundantly expressed but function differently in the suprachiasmatic nucleus (SCN) and hippocampus. However, their roles in depressive-like behavior are still poorly understood.

Objectives

To investigate the alterations of CLOCK and BMAL1 in the SCN and hippocampus in rats subjected to chronic unpredictable stress (CUS) and to explore the relationship of circadian protein and the depressive-like behavior.

Results

Together with depressive-like behavior induced by CUS, CLOCK and BMAL1 in the SC were inhibited during the light period, and the peak expression of CLOCK in the hippocampus was shifted from the dark to light period. BMAL1 expression in the hippocampus was not significantly changed. Two weeks after the termination of CUS, abnormalities of CLOCK in the CA1 and CA3 endured, with unchanged depressive-like behavior, but the expression of CLOCK and BMAL1 in the SCN recovered to control levels. Knockdown of the Clock gene in CA1 induced depressive-like behavior in normal rats. CLOCK in the SCN and hippocampus may participate in the development of depressive-like behavior. However, CLOCK in the hippocampus but not SCN was involved in the long-lasting effects of CUS on depressive-like behavior. BMAL1 in the hippocampus appeared to be unrelated to the effects of CUS on depressive-like behavior.

Conclusion

CLOCK protein in the hippocampus but not SCN play an important role in the long-lasting depressive-like behavior induced by CUS. These findings suggest a novel therapeutic target in the development of new antidepressants focusing on the regulation of circadian rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356

    PubMed  CAS  Google Scholar 

  • Alvarez JD, Sehgal A (2002) Circadian rhythms: finer clock control. Nature 419:798–799

    Article  PubMed  CAS  Google Scholar 

  • Amir S, Lamont EW, Robinson B, Stewart J (2004) A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 24:781–790

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511

    Article  PubMed  CAS  Google Scholar 

  • Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553

    Article  PubMed  CAS  Google Scholar 

  • Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B:23–26

    Article  PubMed  Google Scholar 

  • Berchtold NC, Oliff HS, Isackson P, Cotman CW (1999) Hippocampal BDNF mRNA shows a diurnal regulation, primarily in the exon III transcript. Brain Res Mol Brain Res 71:11–22

    Article  PubMed  CAS  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  PubMed  CAS  Google Scholar 

  • Boivin DB (2000) Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 25:446–458

    PubMed  CAS  Google Scholar 

  • Bova R, Micheli MR, Qualadrucci P, Zucconi GG (1998) BDNF and trkB mRNAs oscillate in rat brain during the light–dark cycle. Brain Res Mol Brain Res 57:321–324

    Article  PubMed  CAS  Google Scholar 

  • Brunel S, de Montigny C (1987) Diurnal rhythms in the responsiveness of hippocampal pyramidal neurons to serotonin, norepinephrine, gamma-aminobutyric acid and acetylcholine. Brain Res Bull 18:205–212

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Markman M, Nunes-Cardoso B, Hou YX, Shinn S (1993) Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: a light and electron microscopic study. J Comp Neurol 335:42–54

    Article  PubMed  CAS  Google Scholar 

  • Bunney JN, Potkin SG (2008) Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 86:23–32

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury D, Wang LM, Colwell CS (2005) Circadian regulation of hippocampal long-term potentiation. J Biol Rhythm 20:225–236

    Article  Google Scholar 

  • Desan PH, Oren DA, Malison R, Price LH, Rosenbaum J, Smoller J, Charney DS, Gelernter J (2000) Genetic polymorphism at the CLOCK gene locus and major depression. Am J Med Genet 96:418–421

    Article  PubMed  CAS  Google Scholar 

  • Eckel-Mahan KL, Phan T, Han S, Wang H, Chan GC, Scheiner ZS, Storm DR (2008) Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci 11:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology (Berl) 199:1–14

    Article  CAS  Google Scholar 

  • Fritzsche M, Heller R, Hill H, Kick H (2001) Sleep deprivation as a predictor of response to light therapy in major depression. J Affect Disord 62:207–215

    Article  PubMed  CAS  Google Scholar 

  • Gorka Z, Moryl E, Papp M (1996) Effect of chronic mild stress on circadian rhythms in the locomotor activity in rats. Pharmacol Biochem Behav 54:229–234

    Article  PubMed  CAS  Google Scholar 

  • Gronli J, Murison R, Fiske E, Bjorvatn B, Sorensen E, Portas CM, Ursin R (2005) Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiol Behav 84:571–577

    Article  PubMed  CAS  Google Scholar 

  • Holmes MC, French KL, Seckl JR (1995) Modulation of serotonin and corticosteroid receptor gene expression in the rat hippocampus with circadian rhythm and stress. Brain Res Mol Brain Res 28:186–192

    Article  PubMed  CAS  Google Scholar 

  • Holmes MC, French KL, Seckl JR (1997) Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. J Neurosci 17:4056–4065

    PubMed  CAS  Google Scholar 

  • Jiang WG, Li SX, Zhou SJ, Sun Y, Shi J, Lu L (2011) Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res 1399:25–32

    Article  PubMed  CAS  Google Scholar 

  • Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH (2010) Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20:377–388

    PubMed  CAS  Google Scholar 

  • Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72–96

    Article  PubMed  Google Scholar 

  • Keller J, Flores B, Gomez RG, Solvason HB, Kenna H, Williams GH, Schatzberg AF (2006) Cortisol circadian rhythm alterations in psychotic major depression. Biol Psychiatry 60:275–281

    Article  PubMed  CAS  Google Scholar 

  • Lam RW (2006) Sleep disturbances and depression: a challenge for antidepressants. Int Clin Psychopharmacol 21(Suppl 1):S25–S29

    Article  PubMed  Google Scholar 

  • Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB (2007) The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci 9:333–342

    PubMed  Google Scholar 

  • Lee I, Kesner RP (2002) Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 5:162–168

    Article  PubMed  CAS  Google Scholar 

  • Lewy AJ, Bauer VK, Cutler NL, Sack RL, Ahmed S, Thomas KH, Blood ML, Jackson JM (1998) Morning vs evening light treatment of patients with winter depression. Arch Gen Psychiatry 55:890–896

    Article  PubMed  CAS  Google Scholar 

  • Luo AH, Aston-Jones G (2009) Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci 29:748–760

    Article  PubMed  Google Scholar 

  • McClung CA (2007) Role for the Clock gene in bipolar disorder. Cold Spring Harb Symp Quant Biol 72:637–644

    Article  PubMed  CAS  Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  PubMed  CAS  Google Scholar 

  • Mendoza J, Challet E (2009) Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neuroscientist 15:477–488

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Coque L, Cao JL, Kumar J, Chakravarty S, Asaithamby A, Graham A, Gordon E, Enwright JF 3rd, DiLeone RJ, Birnbaum SG, Cooper DC, McClung CA (2010) Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503–511

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Okumura N (2010) Coordinated regulation of circadian rhythms and homeostasis by the suprachiasmatic nucleus. Proc Jpn Acad Ser B Phys Biol Sci 86:391–409

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 5:361–372

    Article  PubMed  CAS  Google Scholar 

  • Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K (1999) Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci Lett 267:69–72

    Article  PubMed  CAS  Google Scholar 

  • Racagni G, Riva MA, Popoli M (2007) The interaction between the internal clock and antidepressant efficacy. Int Clin Psychopharmacol 22(Suppl 2):S9–S14

    Article  PubMed  Google Scholar 

  • Rasmusson AM, Shi L, Duman R (2002) Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27:133–142

    Article  PubMed  CAS  Google Scholar 

  • Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA (2004) Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 55:708–714

    Article  PubMed  CAS  Google Scholar 

  • Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA Jr, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104:6406–6411

    Article  PubMed  CAS  Google Scholar 

  • Salinas-Navarro M, Jimenez-Lopez M, Valiente-Soriano FJ, Alarcon-Martinez L, Aviles-Trigueros M, Mayor S, Holmes T, Lund RD, Villegas-Perez MP, Vidal-Sanz M (2009) Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision Res 49:637–647

    Article  PubMed  CAS  Google Scholar 

  • Sanchez S, Sanchez C, Paredes SD, Cubero J, Rodriguez AB, Barriga C (2008) Circadian variations of serotonin in plasma and different brain regions of rats. Mol Cell Biochem 317:105–111

    Article  PubMed  CAS  Google Scholar 

  • Shi HS, Zhu WL, Liu JF, Luo YX, Si JJ, Wang SJ, Xue YX, Ding ZB, Shi J, Lu L (2012) PI3K/Akt signaling pathway in the basolateral amygdala mediates the rapid antidepressant-like effects of trefoil factor 3. Neuropsychopharmacology 37:2671–2683

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56:131–137

    Article  PubMed  CAS  Google Scholar 

  • Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C, Gutierrez-Zotes A, Puigdemont D, Bayes M, Crespo JM, Martorell L, Vilella E, Labad A, Vallejo J, Perez V, Menchon JM, Estivill X, Gratacos M, Urretavizcaya M (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Sylvester CM, Krout KE, Loewy AD (2002) Suprachiasmatic nucleus projection to the medial prefrontal cortex: a viral transneuronal tracing study. Neuroscience 114:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Uz T, Ahmed R, Akhisaroglu M, Kurtuncu M, Imbesi M, Dirim Arslan A, Manev H (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Wang LM, Dragich JM, Kudo T, Odom IH, Welsh DK, O'Dell TJ, Colwell CS (2009) Expression of the circadian clock gene Period2 in the hippocampus: possible implications for synaptic plasticity and learned behaviour. ASN Neuro 1:e10012

    Article  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  CAS  Google Scholar 

  • Wirz-Justice A, Benedetti F, Berger M, Lam RW, Martiny K, Terman M, Wu JC (2005) Chronotherapeutics (light and wake therapy) in affective disorders. Psychol Med 35:939–944

    Article  PubMed  Google Scholar 

  • Wyse CA, Coogan AN (2010) Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 1337:21–31

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Wang G, Wang H, Liu Z, Wang X (2009) Cytoskeletal alterations in rat hippocampus following chronic unpredictable mild stress and re-exposure to acute and chronic unpredictable mild stress. Behav Brain Res 205:518–524

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Natural Science Foundation of China (no. 30800362). The authors declare that they do not have any conflicts of interest related to the data presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Li Zhu or Lin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, WG., Li, SX., Liu, JF. et al. Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology 227, 79–92 (2013). https://doi.org/10.1007/s00213-012-2941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2941-4

Keywords

Navigation