Skip to main content
Log in

Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Selective rapid eye movement sleep (REMS) deprivation using the platform-on-water (“flower pot”) method causes sleep rebound with increased REMS, decreased REMS latency, and activation of the melanin-concentrating hormone (MCH) expressing neurons in the hypothalamus. MCH is implicated in the pathomechanism of depression regarding its influence on mood, feeding behavior, and REMS.

Objectives

We investigated the effects of the most selective serotonin reuptake inhibitor escitalopram on sleep rebound following REMS deprivation and, in parallel, on the activation of MCH-containing neurons.

Methods

Escitalopram or vehicle (10 mg/kg, intraperitoneally) was administered to REMS-deprived (72 h) or home cage male Wistar rats. During the 3-h-long “rebound sleep”, electroencephalography was recorded, followed by an MCH/Fos double immunohistochemistry.

Results

During REMS rebound, the time spent in REMS and the number of MCH/Fos double-labeled neurons in the lateral hypothalamus increased markedly, and REMS latency showed a significant decrease. All these effects of REMS deprivation were significantly attenuated by escitalopram treatment. Besides the REMS-suppressing effects, escitalopram caused an increase in amount of and decrease in latency of slow wave sleep during the rebound.

Conclusions

These results show that despite the high REMS pressure caused by REMS deprivation procedure, escitalopram has the ability to suppress REMS rebound, as well as to diminish the activation of MCH-containing neurons, in parallel. Escitalopram caused a shift from REMS to slow wave sleep during the rebound. Furthermore, these data point to the potential connection between the serotonergic system and MCH in sleep regulation, which can be relevant in depression and in other mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6:341–351

    PubMed  Google Scholar 

  • Antal-Zimanyi I, Khawaja X (2009) The role of melanin-concentrating hormone in energy homeostasis and mood disorders. J Mol Neurosci 39:86–98

    Article  PubMed  CAS  Google Scholar 

  • Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11–15

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245

    Article  PubMed  CAS  Google Scholar 

  • Bodizs R (2009) In waves' parlance: serotonin and sleep oscillations. Neuropsychopharmacol Hung 11:191–199

    PubMed  Google Scholar 

  • Bodizs R, Purebl G, Rihmer Z (2010) Mood, mood fluctuations and depression: role of the circadian rhythms. Neuropsychopharmacol Hung 12:277–287

    PubMed  Google Scholar 

  • Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 8:825–830

    Article  PubMed  CAS  Google Scholar 

  • Ceglia I, Acconcia S, Fracasso C, Colovic M, Caccia S, Invernizzi RW (2004) Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142:469–478

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Parks GS, Lee C, Civelli O (2011) Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 43:115–121

    Article  PubMed  CAS  Google Scholar 

  • Dugovic C (2001) Role of serotonin in sleep mechanisms. Rev Neurol (Paris) 157:S16–S19

    CAS  Google Scholar 

  • El Mansari M, Sanchez C, Chouvet G, Renaud B, Haddjeri N (2005) Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 30:1269–1277

    PubMed  CAS  Google Scholar 

  • Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-D-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261:89–92

    Google Scholar 

  • Gandolfo G, Gauthier P, Arnaud C, Gottesmann C (1996) Influence of paradoxical sleep deprivation on the intermediate stage of sleep in the rat. Neurosci Res 25:123–127

    PubMed  CAS  Google Scholar 

  • Gehlert DR, Rasmussen K, Shaw J, Li X, Ardayfio P, Craft L, Coskun T, Zhang HY, Chen Y, Witkin JM (2009) Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression. J Pharmacol Exp Ther 329:429–438

    Article  PubMed  CAS  Google Scholar 

  • Gerashchenko D, Shiromani PJ (2004) Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness. Mol Neurobiol 29:41–59

    Article  PubMed  CAS  Google Scholar 

  • Gillin JC (1983) The sleep therapies of depression. Prog Neuropsychopharmacol Biol Psychiatry 7:351–364

    Article  PubMed  CAS  Google Scholar 

  • Goder R, Seeck-Hirschner M, Stingele K, Huchzermeier C, Kropp C, Palaschewski M, Aldenhoff J, Koch J (2011) Sleep and cognition at baseline and the effects of REM sleep diminution after 1 week of antidepressive treatment in patients with depression. J Sleep Res 20:544–551

    Article  PubMed  Google Scholar 

  • Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45–48

    Article  PubMed  CAS  Google Scholar 

  • Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C (2007) Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol 505:147–157

    Article  PubMed  Google Scholar 

  • Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proc Natl Acad Sci USA 106:2418–2422

    Article  PubMed  CAS  Google Scholar 

  • Hemmeter UM, Hemmeter-Spernal J, Krieg JC (2010) Sleep deprivation in depression. Expert Rev Neurother 10:1101–1115

    Article  PubMed  Google Scholar 

  • Kantor S, Jakus R, Balogh B, Benko A, Bagdy G (2004) Increased wakefulness, motor activity and decreased theta activity after blockade of the 5-HT2B receptor by the subtype-selective antagonist SB-215505. Br J Pharmacol 142:1332–1342

    Article  PubMed  CAS  Google Scholar 

  • Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G (2011) Association between the activation of MCH and orexin immunoreactive neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 59:686–694

    Article  PubMed  CAS  Google Scholar 

  • Kitka T, Katai Z, Pap D, Molnar E, Adori C, Bagdy G (2009) Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Behav Brain Res 205:482–487

    Article  PubMed  Google Scholar 

  • Kuhs H, Tolle R (1991) Sleep deprivation therapy. Biol Psychiatry 29:1129–1148

    Article  PubMed  CAS  Google Scholar 

  • Lagos P, Torterolo P, Jantos H, Monti JM (2011a) Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res 1369:112–118

    Article  PubMed  CAS  Google Scholar 

  • Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P (2011b) Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res 218:259–266

    Article  PubMed  CAS  Google Scholar 

  • Landsness EC, Goldstein MR, Peterson MJ, Tononi G, Benca RM (2011) Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J Psychiatr Res 45:1019–1026

    Article  PubMed  Google Scholar 

  • Leonard B, Taylor D (2010) Escitalopram—translating molecular properties into clinical benefit: reviewing the evidence in major depression. J Psychopharmacol 24:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Maudhuit C, Jolas T, Chastanet M, Hamon M, Adrien J (1996) Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep. Biol Psychiatry 40:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Panayi F, Rivet JM, Dekeyne A, Brocco M, Ortuno JC, Di Cara B (2008) The melanin-concentrating hormone1 receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats. Int J Neuropsychopharmacol 11:1105–1122

    Article  PubMed  CAS  Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807–2816

    Article  PubMed  Google Scholar 

  • Monaca C, Boutrel B, Hen R, Hamon M, Adrien J (2003) 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice. Neuropsychopharmacology 28:850–856

    PubMed  CAS  Google Scholar 

  • Montgomery SA, Loft H, Sanchez C, Reines EH, Papp M (2001) Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 88:282–286

    Article  PubMed  CAS  Google Scholar 

  • Monti JM (2011) Serotonin control of sleep–wake behavior. Sleep Med Rev 15:269–281

    Article  PubMed  Google Scholar 

  • Murck H, Nickel T, Kunzel H, Antonijevic IA, Schill J, Zobel A, Steiger A, Sonntag A, Holsboer F (2003) State markers of depression in sleep EEG: dependency on drug and gender in patients treated with tianeptine or paroxetine. Neuropsychopharmacology 28:348–358

    Article  PubMed  CAS  Google Scholar 

  • Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S (2011) Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 61:336–346

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic, London

    Google Scholar 

  • Peyron C, Sapin E, Leger L, Luppi PH, Fort P (2009) Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 30:2052–2059

    Article  PubMed  CAS  Google Scholar 

  • Pissios P (2009) Animals models of MCH function and what they can tell us about its role in energy balance. Peptides 30:2040–2044

    Article  PubMed  CAS  Google Scholar 

  • Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247

    Article  PubMed  CAS  Google Scholar 

  • Riemann D, Berger M, Voderholzer U (2001) Sleep and depression—results from psychobiological studies: an overview. Biol Psychol 57:67–103

    Article  PubMed  CAS  Google Scholar 

  • Selvi Y, Gulec M, Agargun MY, Besiroglu L (2007) Mood changes after sleep deprivation in morningness–eveningness chronotypes in healthy individuals. J Sleep Res 16:241–244

    Article  PubMed  Google Scholar 

  • Sogaard B, Mengel H, Rao N, Larsen F (2005) The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol 45:1400–1406

    Article  PubMed  CAS  Google Scholar 

  • Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44:242–252

    Article  PubMed  Google Scholar 

  • Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:14

    Article  PubMed  CAS  Google Scholar 

  • Ursin R (2002) Serotonin and sleep. Sleep Med Rev 6:55–69

    Article  PubMed  Google Scholar 

  • van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635–652

    Article  PubMed  Google Scholar 

  • Vas S, Katai Z, Kostyalik D, Pap D, Molnar E, Petschner P, Kalmar L, Bagdy G (2013) Differential adaptation of REM sleep latency, intermediate stage and theta power effects of escitalopram after chronic treatment. J Neural Transm 120:169–176

    Article  PubMed  CAS  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19

    Article  PubMed  Google Scholar 

  • Vyazovskiy VV, Achermann P, Tobler I (2007) Sleep homeostasis in the rat in the light and dark period. Brain Res Bull 74:37–44

    Article  PubMed  CAS  Google Scholar 

  • Wade A, Michael Lemming O, Bang Hedegaard K (2002) Escitalopram 10 mg/day is effective and well tolerated in a placebo-controlled study in depression in primary care. Int Clin Psychopharmacol 17:95–102

    Article  PubMed  CAS  Google Scholar 

  • Wilson S, Argyropoulos S (2005) Antidepressants and sleep: a qualitative review of the literature. Drugs 65:927–947

    Article  PubMed  CAS  Google Scholar 

  • Winokur A, DeMartinis NA 3rd, McNally DP, Gary EM, Cormier JL, Gary KA (2003) Comparative effects of mirtazapine and fluoxetine on sleep physiology measures in patients with major depression and insomnia. J Clin Psychiatry 64:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Winokur A, Gary KA, Rodner S, Rae-Red C, Fernando AT, Szuba MP (2001) Depression, sleep physiology, and antidepressant drugs. Depress Anxiety 14:19–28

    Article  PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445–453

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Bunney WE (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry 147:14–21

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by TAMOP-4.2.1.B-09/1/KMR-2010-0001, the 6th Framework Program of the European Community LSHM-CT-2004-503474, and the Hungarian Science Research Foundation, OTKA A-08-1-2009-0050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Bagdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kátai, Z., Ádori, C., Kitka, T. et al. Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation. Psychopharmacology 228, 439–449 (2013). https://doi.org/10.1007/s00213-013-3046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3046-4

Keywords

Navigation