Skip to main content

Advertisement

Log in

Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Subanesthetic doses of ketamine have been reported to induce psychotic states that may mimic positive and negative symptoms as well as cognitive and memory deficits similar to those observed in schizophrenia. The cognitive and memory deficits are persistent, and their underlying cellular mechanisms remain unclear.

Objectives

We sought to investigate the roles of dopamine D1/D5 receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal synaptic transmission and spatial memory impairment induced by ketamine.

Methods

We examined the effects of subanesthetic ketamine on hippocampal synaptic transmission in freely moving rats. Spatial memory was tested with the Morris water maze. Pretreatment with the D1/D5 receptors antagonist SCH23390 or the AMPA receptors endocytosis interfering peptide Tat-GluR23Y was conducted to examine their capacities to reverse ketamine-induced electrophysiological and behavioral alterations. A series of behavioral observations, including locomotion, prepulse inhibition, and social interaction, were also conducted after ketamine treatment.

Results

Ketamine induced synaptic depression lasting at least 4 h at hippocampal Schaffer collateral-CA1 synapses in freely moving rats and long-term spatial memory impairment. Both the effects were blocked by either SCH23390 or Tat-GluR23Y. Ketamine also elicited transient behavioral changes lasting less than 90 min, such as hyperlocomotion and prepulse inhibition deficits. These changes were ameliorated by SCH23390 but not by Tat-GluR23Y. Rats treated with ketamine showed social withdrawal that was also attenuated by either SCH23390 or Tat-GluR23Y.

Conclusions

Our results indicate that hippocampal synaptic depression is involved in ketamine-induced memory impairment, and this is modulated by D1/D5 receptors activation and AMPA receptors endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW, Taghibiglou C, Wang Y, Lu J, Wong TP, Sheng M, Wang YT (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  PubMed  CAS  Google Scholar 

  • Bai HY, Cao J, Liu N, Xu L, Luo JH (2009) Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors. Hippocampus 19:289–298

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog Neuro-Psychoph 27:687–700

    Article  CAS  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  PubMed  CAS  Google Scholar 

  • Bethus I, Tse D, Morris RG (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30:1610–1618

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nature medicine 8:825–830

    Article  PubMed  CAS  Google Scholar 

  • Brebner K, Wong TP, Liu L, Liu Y, Campsall P, Gray S, Phelps L, Phillips AG, Wang YT (2005) Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310:1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Adler CM, Weisenfeld N, Su TP, Elman I, Picken L, Malhotra AK, Pickar D (1998) Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 29:142–147

    Article  PubMed  CAS  Google Scholar 

  • Cai JX, Arnsten AF (1997) Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 283:183–189

    PubMed  CAS  Google Scholar 

  • Chen Z, Fujii S, Ito K, Kato H, Kaneko K, Miyakawa H (1995) Activation of dopamine D1 receptors enhances long-term depression of synaptic transmission induced by low frequency stimulation in rat hippocampal CA1 neurons. Neurosci Lett 188:195–198

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ito K, Fujii S, Miura M, Furuse H, Sasaki H, Kaneko K, Kato H, Miyakawa H (1996) Roles of dopamine receptors in long-term depression: enhancement via D1 receptors and inhibition via D2 receptors. Receptors & Channels 4:1–8

    CAS  Google Scholar 

  • da Silva WC, Kohler CC, Radiske A, Cammarota M (2012) D1/D5 dopamine receptors modulate spatial memory formation. Neurobiol Learn Mem 97:271–275

    Article  PubMed  Google Scholar 

  • de Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL (1999) Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology 142:9–17

    Article  PubMed  Google Scholar 

  • File SE, Hyde JR (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilisers and of stimulants. Pharmacol Biochem Behav 11:65–69

    Article  PubMed  CAS  Google Scholar 

  • Gangarossa G, Longueville S, De Bundel D, Perroy J, Herve D, Girault JA, Valjent E (2012) Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22:2199–2207

    Article  PubMed  CAS  Google Scholar 

  • Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, Koehl M, Abrous DN, Mendizabal-Zubiaga J, Grandes P, Liu Q, Bai G, Wang W, Xiong L, Ren W, Marsicano G, Zhang X (2012) Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148:1039–1050

    Article  PubMed  CAS  Google Scholar 

  • Hansen N, Manahan-Vaughan D (2012) Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex. doi:10.1093/cercor/bhs362

  • Huang YY, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 92:2446–2450

    Article  PubMed  CAS  Google Scholar 

  • Huber KM, Kayser MS, Bear MF (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Hunt MJ, Kessal K, Garcia R (2005) Ketamine induces dopamine-dependent depression of evoked hippocampal activity in the nucleus accumbens in freely moving rats. J Neurosci 25:524–531

    Article  PubMed  CAS  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama H, Matsumoto M, Otani S, Kimura SI, Shimamura KI, Ishikawa S, Yanagawa Y, Togashi H (2011) Mechanisms underlying ketamine-induced synaptic depression in rat hippocampus-medial prefrontal cortex pathway. Neuroscience 177:159–169

    Article  PubMed  CAS  Google Scholar 

  • Keilhoff G, Becker A, Grecksch G, Wolf G, Bernstein HG (2004) Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience 126:591–598

    Article  PubMed  CAS  Google Scholar 

  • Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    Article  PubMed  CAS  Google Scholar 

  • Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729

    Article  PubMed  CAS  Google Scholar 

  • Li HB, Mao RR, Zhang JC, Yang Y, Cao J, Xu L (2008) Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry 64:286–292

    Article  PubMed  CAS  Google Scholar 

  • Lindefors N, Barati S, O'Connor WT (1997) Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex. Brain research 759:205–212

    Article  PubMed  CAS  Google Scholar 

  • Loebrich S, Nedivi E (2009) The function of activity-regulated genes in the nervous system. Physiol Rev 89:1079–1103

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  PubMed  CAS  Google Scholar 

  • Luscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, Malenka RC, Nicoll RA (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24:649–658

    Article  PubMed  CAS  Google Scholar 

  • Lyons MR, West AE (2011) Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 94:259–295

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  PubMed  CAS  Google Scholar 

  • Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, Wang YT (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25:649–662

    Article  PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, von Haebler D, Winter C, Juckel G, Heinemann U (2008) A single application of MK801 causes symptoms of acute psychosis, deficits in spatial memory, and impairment of synaptic plasticity in rats. Hippocampus 18:125–134

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Moosavi M, Yadollahi Khales G, Rastegar K, Zarifkar A (2012) The effect of sub-anesthetic and anesthetic ketamine on water maze memory acquisition, consolidation and retrieval. Eur J Pharmacol 677:107–110

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 29:208–218

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Orser BA, Pennefather PS, MacDonald JF (1997) Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 86:903–917

    Article  PubMed  CAS  Google Scholar 

  • Razoux F, Garcia R, Lena I (2007) Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology 32:719–727

    Article  PubMed  CAS  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  PubMed  CAS  Google Scholar 

  • Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, Bertrand L, Yang-Feng TL, Fremeau RT Jr, Caron MG (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci U S A 88:7491–7495

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  PubMed  CAS  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wu J, Zhu B, Li C, Cai JX (2012) Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice. Stress 15:237–242

    Article  PubMed  CAS  Google Scholar 

  • Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L, Weinberg J, Christie BR, Phillips AG, Wang YT (2007) Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci U S A 104:11471–11476

    Article  PubMed  CAS  Google Scholar 

  • Xing B, Kong H, Meng X, Wei SG, Xu M, Li SB (2010) Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 169:1511–1519

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387:497–500

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1998) Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394:891–894

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    PubMed  CAS  Google Scholar 

  • Zhang Y, Behrens MM, Lisman JE (2008) Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 100:959–965

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by 973 program from the Ministry of Science and Technology of China (2013CB835103 to L.X., 2009CB941302 to L.X. and 2009CB522006 to J.C.), the Strategic Priority Research Program of the Chinese Academy of Science (XDB02020200 to L.X.), and The National Science Foundation of China (31100775 to Q.-X. Z.) and NSFC-Yunnan Joint Grant (U1032605 to L.X.) and NSFC-CIHR Joint Grant (81161120536 to L.X.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Xin Zhou or Lin Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig.1

Electrophysiological recording of basal synaptic transmission. a Synaptic transmission at Schaffer collateral-CA1 synapses was recorded stably for at least 24 h in freely moving rats (n = 5). b, c Tat-GluR2 peptides and D1/D5 receptors antagonist did not affect basal synaptic transmission in the hippocampal CA1 region in freely moving rats. After 40 min of stable baseline recording, rats were injected b Tat-GluR23S peptide (3 μmol/kg, i.p., n = 5), Tat-GluR23Y peptide (3 μmol/kg, i.p., n = 5), or c SCH23390 (0.1 mg/kg, n = 5 and 0.25 mg/kg, n = 5; i.p.). The impact of these drugs on fEPSPs was monitored for 2 or 3 h. SCH, SCH23390 (JPEG 37 kb)

High resolution image (TIFF 231 kb)

Fig.2

Effects of different treatments on swim speed in the Morris water maze. During the probe test, the impact of eight different treatments on swim speed was examined: saline + saline (i.p., n = 19); SCH23390 + saline (0.1 mg/kg, i.p., n = 10); Tat-GluR23S peptide + saline (3 μmol/kg, i.p., n = 10) and Tat-GluR23Y peptide + saline (3 μmol/kg, i.p., n = 9); saline + ketamine (30 mg/kg, i.p., n = 10); SCH23390 + ketamine (0.1 mg/kg, i.p., n = 12); Tat-GluR23S peptide + ketamine (3 μmol/kg, i.p., n = 13) and Tat-GluR23Y peptide + ketamine (3 μmol/kg, i.p., n = 14). No drug effect on swim speed during the retrieval phase was detected. Data represent the mean ± the SEM. Sal saline, Ket ketamine, SCH SCH23390 (JPEG 27 kb)

High resolution image (TIFF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, TT., Tan, JW., Yuan, Q. et al. Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology 228, 451–461 (2013). https://doi.org/10.1007/s00213-013-3048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3048-2

Keywords

Navigation