Skip to main content
Log in

Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Psychoactive-substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2); and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects.

Objectives

This study compares the behavioral effects and the mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant.

Methods

The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)-DOM, (+)-LSD, (±)-MDMA, and S(+)-methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins.

Results

The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound, but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter.

Conclusions

The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I, and DOC were similar to those of several hallucinogens, but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogen-like discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may be important in 2C-I's psychoactive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuna-Castillo C, Villalobos C, Moya PR, Saez P, Cassels BK, Huidobro-Toro JP (2002) Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT(2A) and 5-HT(2C) receptors. Br J Pharmacol 136:510–519

    Article  CAS  PubMed  Google Scholar 

  • Backstrom JR, Chang MS, Chu H, Niswender CM, Sanders-Bush E (1999) Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD). Neuropsychopharmacology 21:77S–81S

    CAS  PubMed  Google Scholar 

  • Baker LE, Broadbent J, Michael EK, Matthews PK, Metosh CA, Saunders RB, West WB, Appel JB (1995) Assessment of the discriminative stimulus effects of the optical isomers of ecstasy (3,4-methylenedioxymethamphetamine; MDMA). Behav Pharmacol 6:263–275

    Article  CAS  PubMed  Google Scholar 

  • Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54:94–104

    CAS  PubMed  Google Scholar 

  • Bosak A, Lovecchio F, Levine M (2013) Recurrent seizures and serotonin syndrome following "2C-I" ingestion. J Med Toxicol 9(2):196–198

    Article  PubMed  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Cohen S (1967) Psychotomimetic agents. Annu Rev Pharmacol 7:301–318

    Article  CAS  PubMed  Google Scholar 

  • de Boer D, Bosman I (2004) A new trend in drugs-of-abuse; the 2C-series of phenethylamine designer drugs. Pharm World Sci 26:110–113

    Article  PubMed  Google Scholar 

  • DEA (2013) DEA Title 21 Code of federal regulations, Section 1308.11 Schedule 1(d) hallucinogenic substances. http://www.deadiversion.usdoj.gov/21cfr/cfr/1308/1308_11.htm. Accessed 3 Sept 2013

  • Dean BV, Stellpflug SJ, Burnett AM, Engebretsen KM (2013) 2C or not 2C: phenethylamine designer drug review. J Med Toxicol 9:172–178

    Article  CAS  PubMed  Google Scholar 

  • Drees JC, Stone JA, Wu AH (2009) Morbidity involving the hallucinogenic designer amines MDA and 2C-I. J Forensic Sci 54:1485–1487

    Article  CAS  PubMed  Google Scholar 

  • Egan C, Grinde E, DuPre A, Roth BL, Hake M, Teitler M, Herrick-Davis K (2000) Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT(2A) and 5-HT(2C) receptors. Synapse 35:144–150

    Article  CAS  PubMed  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289:877–885

    CAS  PubMed  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Harrington AW, Eckler JR, Arshad S, Rabin RA, Winter JC, Coop A, Rice KC, Woods JH (2005) Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats. Psychopharmacology (Berl) 181:496–503

    Article  CAS  Google Scholar 

  • Fantegrossi WE, Murnane KS, Reissig CJ (2008) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 75:17–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiorella D, Rabin RA, Winter JC (1995) The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. I: antagonist correlation analysis. Psychopharmacology (Berl) 121:347–356

    Article  CAS  Google Scholar 

  • Gatch MB, Rutledge MA, Carbonaro T, Forster MJ (2009) Comparison of the discriminative stimulus effects of dimethyltryptamine with different classes of psychoactive compounds in rats. Psychopharmacology (Berl) 204:715–724

    Article  CAS  Google Scholar 

  • Gatch MB, Forster MJ, Janowsky A, Eshleman AJ (2011) Abuse liability profile of three substituted tryptamines. J Pharmacol Exp Ther 338:280–289

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61:364–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Mathis CA, Shulgin AT, Hoffman AJ, Nichols DE (1990) [125I]-2-(2,5-dimethoxy-4-iodophenyl)aminoethane ([125I]-2C-I) as a label for the 5-HT2 receptor in rat frontal cortex. Pharmacol Biochem Behav 35:211–217

    Article  CAS  PubMed  Google Scholar 

  • Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370:114–123

    Article  CAS  PubMed  Google Scholar 

  • Krebs KM, Geyer MA (1994) Cross-tolerance studies of serotonin receptors involved in behavioral effects of LSD in rats. Psychopharmacology (Berl) 113:429–437

    Article  CAS  Google Scholar 

  • Krebs-Thomson K, Paulus MP, Geyer MA (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18:339–351

    Article  CAS  PubMed  Google Scholar 

  • Kurrasch-Orbaugh DM, Watts VJ, Barker EL, Nichols DE (2003) Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 304:229–237

    Article  CAS  PubMed  Google Scholar 

  • Li JX, Koek W, Rice KC, France CP (2010) Differential effects of serotonin 5-HT1A receptor agonists on the discriminative stimulus effects of the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rats and rhesus monkeys. J Pharmacol Exp Ther 333:244–252

    Article  CAS  PubMed  Google Scholar 

  • McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE (2006) 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J Med Chem 49:5794–5803

    Article  CAS  PubMed  Google Scholar 

  • Moya PR, Berg KA, Gutierrez-Hernandez MA, Saez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP (2007) Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J Pharmacol Exp Ther 321:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Nagai F, Nonaka R, Satoh Hisashi KK (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. The National Academies Press, Washington, DC

  • Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verriele L, Audinot V, Millan MJ (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol 355:245–256

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (1986a) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18:305–313

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (1986b) Studies of the relationship between molecular structure and hallucinogenic activity. Pharmacol Biochem Behav 24:335–340

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

    Article  CAS  PubMed  Google Scholar 

  • Nonaka R, Nagai F, Ogata A, Satoh K (2007) In vitro screening of psychoactive drugs by [(35)S]GTPgammaS binding in rat brain membranes. Biol Pharm Bull 30:2328–2333

    Article  CAS  PubMed  Google Scholar 

  • Oberlender R, Nichols DE (1988) Drug discrimination studies with MDMA and amphetamine. Psychopharmacology (Berl) 95:71–76

    Article  CAS  Google Scholar 

  • Ovaska H, Viljoen A, Puchnarewicz M, Button J, Ramsey J, Holt DW, Dargan PI, Wood DM (2008) First case report of recreational use of 2,5-dimethoxy-4-chloroamphetamine confirmed by toxicological screening. Eur J Emerg Med 15:354–356

    Article  PubMed  Google Scholar 

  • Parrish JC, Braden MR, Gundy E, Nichols DE (2005) Differential phospholipase C activation by phenylalkylamine serotonin 5-HT 2A receptor agonists. J Neurochem 95:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Rabin RA, Regina M, Doat M, Winter JC (2002) 5-HT2A receptor-stimulated phosphoinositide hydrolysis in the stimulus effects of hallucinogens. Pharmacol Biochem Behav 72:29–37

    Article  CAS  PubMed  Google Scholar 

  • Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92:179–212

    Article  CAS  PubMed  Google Scholar 

  • Sacks J, Ray MJ, Williams S, Opatowsky MJ (2012) Fatal toxic leukoencephalopathy secondary to overdose of a new psychoactive designer drug 2C-E ("Europa"). Proc (Bayl Univ Med Cent) 25:374–376

    Google Scholar 

  • Sanders-Bush E, Burris KD, Knoth K (1988) Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J Pharmacol Exp Ther 246:924–928

    CAS  PubMed  Google Scholar 

  • Schechter MD (1998) MDMA-like stimulus effects of hallucinogens in male Fawn-Hooded rats. Pharmacol Biochem Behav 59:265–270

    Article  CAS  PubMed  Google Scholar 

  • Schindler EA, Harvey JA, Aloyo VJ (2013) Phospholipase C mediates (+/−)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-, but not lysergic acid diethylamide (LSD)-elicited head bobs in rabbit medial prefrontal cortex. Brain Res 1491:98–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shulgin AT, Shulgin A (1991) Pihkal: a chemical love story. Transform, Berkeley, CA

  • Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology (Berl) 94:213–216

    Article  CAS  Google Scholar 

  • Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A, Kennedy JM, Craymer K, Farrington L, Auh JS (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr 178:440–466

    CAS  PubMed  Google Scholar 

  • Van Vrancken MJ, Benavides R, Wians FH Jr (2013) Identification of designer drug 2C-E (4-ethyl-2, 5-dimethoxy-phenethylamine) in urine following a drug overdose. Proc (Bayl Univ Med Cent) 26:58–61

    Google Scholar 

  • Villalobos CA, Bull P, Saez P, Cassels BK, Huidobro-Toro JP (2004) 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br J Pharmacol 141:1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Winter JC (2009) Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology (Berl) 203:251–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by National Institutes of Health National Institute on Drug Abuse/Veterans Affairs Interagency agreements (Y1 DA 5007–05, Y1-DA-0101-01), The Methamphetamine Abuse Research Center (P50 DA018165), the Veterans Affairs Research Career and Merit Review programs, and by the National Institute on Drug Abuse contracts (N01DA2-8822 and N01DA-7-8872). The NIDA project officers contributed to study design and had no further role in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the paper for publication.

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy J. Eshleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshleman, A.J., Forster, M.J., Wolfrum, K.M. et al. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function. Psychopharmacology 231, 875–888 (2014). https://doi.org/10.1007/s00213-013-3303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3303-6

Keywords

Navigation