Skip to main content
Log in

Cognitive impact of cytotoxic agents in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Adjuvant chemotherapy is associated with changes in cognition in a subgroup of cancer patients. Chemotherapy is generally given as a combination of cytotoxic agents, which makes it hard to define the agent responsible for these observed changes. Literature on animal experiments has been difficult to interpret due to variance in experimental setup.

Methods

We examined the effects of cytotoxic agents administered separately on various cognitive measures in a standardized animal model. Male C57Bl/6 mice received cyclophosphamide, docetaxel, doxorubicin, 5-fluorouracil, methotrexate, or topotecan. These agents represent different compound classes based on their working mechanism and are frequently prescribed in the clinic. A control group received saline. Behavioral testing started 2 or 15 weeks after treatment and included testing general measures of behavior and cognitive task performance: spontaneous behavior in an automated home cage, open field, novel location recognition (NLR), novel object recognition (NOR), Barnes maze, contextual fear conditioning, and a simple choice reaction time task (SCRTT).

Results

Cyclophosphamide, docetaxel, and doxorubicin administration affected spontaneous activity in the automated home cage. All cytotoxic agents affected memory (NLR and/or NOR). Spatial memory measured in the Barnes maze was affected after administration with doxorubicin, 5-fluorouracil, and topotecan. Decreased inhibition in the SCRTT was observed after treatment with cyclophosphamide, docetaxel, and topotecan.

Conclusions

Our data show that, in mice, a single treatment with a cytotoxic agent causes cognitive impairment. Not all cytotoxic agents affected the same cognitive domains, which might be explained by differences in working mechanisms of the various agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7:192–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol 30:3675–3686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akkerman S, Prickaerts J, Steinbusch HW, Blokland A (2012) Object recognition testing: statistical considerations. Behav Brain Res 232:317–322

    Article  PubMed  Google Scholar 

  • Barreto G, Huang TT, Giffard RG (2010) Age-related defects in sensorimotor activity, spatial learning, and memory in C57BL/6 mice. J Neurosurg Anesthesiol 22:214–219

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernard Y, Ribeiro N, Thuaud F, Turkeri G, Dirr R, Boulberdaa M, Nebigil CG, Desaubry L (2011) Flavaglines alleviate doxorubicin cardiotoxicity: implication of Hsp27. PLoS One 6:e25302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bimonte-Nelson HA, Singleton RS, Hunter CL, Price KL, Moore AB, Granholm AC (2003) Ovarian hormones and cognition in the aged female rat: I. Long-term, but not short-term, ovariectomy enhances spatial performance. Behav Neurosci 117:1395–1406

    Article  CAS  PubMed  Google Scholar 

  • Boogerd W (1995) Neurological complications of chemotherapy. In: de Wolff FA (ed) Handbook of clinical neurology, vol 21. Intoxications of the nervous system, part II. Elsevier Science, Amsterdam, pp 527–546

  • Borcel E, Perez-Alvarez L, Herrero AI, Brionne T, Varea E, Berezin V, Bock E, Sandi C, Venero C (2008) Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule. Behav Pharmacol 19:41–49

    Article  PubMed  Google Scholar 

  • Briones TL, Woods J (2011) Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci 12:124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks SP, Pask T, Jones L, Dunnett SB (2005) Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes Brain Behav 4:307–317

    Article  CAS  PubMed  Google Scholar 

  • Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 18:1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Denenberg VH (1969) Open-field bheavior in the rat: what does it mean? Ann N Y Acad Sci 159:852–859

    Article  CAS  PubMed  Google Scholar 

  • Dere E, Huston JP, Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  CAS  PubMed  Google Scholar 

  • DeVita VT, Hellman S, Rosenberg SA (2005) Cancer: principles & practice of oncology, 7th edn. Williams & Wilkins, Lippincott, pp 332–422

  • Dietrich J (2010) Chemotherapy associated central nervous system damage. Adv Exp Med Biol 678:77–85

    Article  CAS  PubMed  Google Scholar 

  • Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22

    Article  PubMed Central  PubMed  Google Scholar 

  • ElBeltagy M, Mustafa S, Umka J, Lyons L, Salman A, Chur-yoe GT, Bhalla N, Bennett G, Wigmore PM (2010) Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav Brain Res 208:112–117

    Article  CAS  PubMed  Google Scholar 

  • ElBeltagy M, Mustafa S, Umka J, Lyons L, Salman A, Dormon K, Allcock C, Bennett G, Wigmore P (2012) The effect of 5-fluorouracil on the long term survival and proliferation of cells in the rat hippocampus. Brain Res Bull 88:514–518

    Article  CAS  PubMed  Google Scholar 

  • Fardell JE, Vardy J, Logge W, Johnston I (2010) Single high dose treatment with methotrexate causes long-lasting cognitive dysfunction in laboratory rodents. Pharmacol Biochem Behav 97:333–339

    Article  CAS  PubMed  Google Scholar 

  • Fardell JE, Vardy J, Shah JD, Johnston IN (2011) Cognitive impairments caused by oxaliplatin and 5-fluorouracil chemotherapy are ameliorated by physical activity. Psychopharmacology (Berlin) 220:183–193

    Article  Google Scholar 

  • Foley JJ, Raffa RB, Walker EA (2008) Effects of chemotherapeutic agents 5-fluorouracil and methotrexate alone and combined in a mouse model of learning and memory. Psychopharmacology (Berlin) 199:527–538

    Article  CAS  Google Scholar 

  • Fremouw T, Fessler CL, Ferguson RJ, Burguete Y (2012) Preserved learning and memory in mice following chemotherapy: 5-fluorouracil and doxorubicin single agent treatment, doxorubicin-cyclophosphamide combination treatment. Behav Brain Res 226:154–162

    Article  CAS  PubMed  Google Scholar 

  • Gandal MJ, Ehrlichman RS, Rudnick ND, Siegel SJ (2008) A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience 157:95–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hampson E (1990) Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 15:97–111

    Article  CAS  PubMed  Google Scholar 

  • Han R, Yang YM, Dietrich J, Luebke A, Mayer-Proschel M, Noble M (2008) Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 7:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Janelsins MC, Roscoe JA, Berg MJ, Thompson BD, Gallagher MJ, Morrow GR, Heckler CE, Jean-Pierre P, Opanashuk LA, Gross RA (2010) IGF-1 partially restores chemotherapy-induced reductions in neural cell proliferation in adult C57BL/6 mice. Cancer Investig 28:544–553

    Article  CAS  Google Scholar 

  • Kemper EM, Verheij M, Boogerd W, Beijnen JH, van Tellingen O (2004) Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 40:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Hirouchi M, Kusuhara H, Schuetz JD, Sugiyama Y (2008) Increasing systemic exposure of methotrexate by active efflux mediated by multidrug resistance-associated protein 3 (mrp3/abcc3). J Pharmacol Exp Ther 327:465–473

    Article  CAS  PubMed  Google Scholar 

  • Koppelmans V, Breteler MM, Boogerd W, Seynaeve C, Schagen SB (2013) Late effects of adjuvant chemotherapy for adult onset non-CNS cancer; cognitive impairment, brain structure and risk of dementia. Crit Rev Oncol Hematol 88:87–101

    Article  PubMed  Google Scholar 

  • Li Y, Vijayanathan V, Gulinello M, Cole PD (2010a) Intrathecal methotrexate induces focal cognitive deficits and increases cerebrospinal fluid homocysteine. Pharmacol Biochem Behav 95:428–433

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Vijayanathan V, Gulinello ME, Cole PD (2010b) Systemic methotrexate induces spatial memory deficits and depletes cerebrospinal fluid folate in rats. Pharmacol Biochem Behav 94:454–463

    Article  CAS  PubMed  Google Scholar 

  • Lobo ED, Balthasar JP (2003) Pharmacokinetic-pharmacodynamic modeling of methotrexate-induced toxicity in mice. J Pharm Sci 92:1654–1664

    Article  CAS  PubMed  Google Scholar 

  • Loos M, Staal J, Schoffelmeer AN, Smit AB, Spijker S, Pattij T (2010) Inhibitory control and response latency differences between C57BL/6J and DBA/2J mice in a Go/No-Go and 5-choice serial reaction time task and strain-specific responsivity to amphetamine. Behav Brain Res 214:216–224

    Article  CAS  PubMed  Google Scholar 

  • Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Neuro-BSIK Mouse Consortium, Verhage M, Smit AB (2013) High throughput phenotyping of spontaneous behavior: variation within and across 11 inbred mouse strains. Genes Brain Behav

  • Lyons L, ElBeltagy M, Bennett G, Wigmore P (2011a) The effects of cyclophosphamide on hippocampal cell proliferation and spatial working memory in rat. PLoS One 6:e21445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons L, ElBeltagy M, Umka J, Markwick R, Startin C, Bennett G, Wigmore P (2011b) Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacology (Berlin) 215:105–115

    Article  CAS  Google Scholar 

  • Lyons L, ElBeltagy M, Bennett G, Wigmore P (2012) Fluoxetine counteracts the cognitive and cellular effects of 5-fluorouracil in the rat hippocampus by a mechanism of prevention rather than recovery. PLoS One 7:e30010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madhyastha S, Somayaji SN, Rao MS, Nalini K, Bairy KL (2002) Hippocampal brain amines in methotrexate-induced learning and memory deficit. Can J Physiol Pharmacol 80:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Maroteaux G, Loos M, van der Sluis S, Koopmans B, Aarts E, van Gassen K, Geurts A, Largaespada DA, Spruijt BM, Stiedl O, Smit AB, Verhage M (2012) High-throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene. Genes Brain Behav 11:772–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mumby DG, Gaskin S, Glenn MJ, Schramek TE, Lehmann H (2002) Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9:49–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Mustafa S, Walker A, Bennett G, Wigmore PM (2008) 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 28:323–330

    Article  PubMed  Google Scholar 

  • Paylor R, Zhao Y, Libbey M, Westphal H, Crawley JN (2001) Learning impairments and motor dysfunctions in adult Lhx5-deficient mice displaying hippocampal disorganization. Physiol Behav 73:781–792

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Pukhalsky A, Shmarina G, Alioshkin V (2012) Cognitive disorders in mice: cytokine signaling pathways as therapeutic targets. OMICS 16:71–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiriz AB, Reolon GK, Preissler T, Rosado JO, Henriques JA, Roesler R, Schwartsmann G (2006) Cancer chemotherapy and cognitive function in rodent models: memory impairment induced by cyclophosphamide in mice. Clin Cancer Res 12:5000–5001

    Article  CAS  PubMed  Google Scholar 

  • Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, Kroemer HK, Schultheiss HP, Tschope C (2009) Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res 69:695–699

    Article  CAS  PubMed  Google Scholar 

  • Rzeski W, Pruskil S, Macke A, Felderhoff-Mueser U, Reiher AK, Hoerster F, Jansma C, Jarosz B, Stefovska V, Bittigau P, Ikonomidou C (2004) Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol 56:351–360

    Article  CAS  PubMed  Google Scholar 

  • Seigers R, Fardell JE (2011) Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev 35:729–741

    Article  PubMed  Google Scholar 

  • Seigers R, Schagen SB, Beerling W, Boogerd W, van Tellingen O, van Dam FS, Koolhaas JM, Buwalda B (2008) Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 186:168–175

    Article  CAS  PubMed  Google Scholar 

  • Seigers R, Schagen SB, Coppens CM, van der Most PJ, van Dam FS, Koolhaas JM, Buwalda B (2009) Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behav Brain Res 2:279–284

    Article  Google Scholar 

  • Sieklucka-Dziuba M, Saczonek J, Dziuba J, Kleinrok Z (1998) Central action of some cytostatics—methotrexate (MTX) and doxorubicin (DXR). II. The influence on the seizure activity and the learning and memory processes in mice. Ann Univ Mariae Curie Sklodowska [Med] 53:81–88

    CAS  Google Scholar 

  • van Acker SA, Kramer K, Voest EE, Grimbergen JA, Zhang J, van der Vijgh WJ, Bast A (1996) Doxorubicin-induced cardiotoxicity monitored by ECG in freely moving mice. A new model to test potential protectors. Cancer Chemother Pharmacol 38:95–101

    Article  PubMed  Google Scholar 

  • Walker EA, Foley JJ, Clark-Vetri R, Raffa RB (2011) Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice. Psychopharmacology (Berlin) 217:539–548

    Article  CAS  Google Scholar 

  • Wefel JS, Schagen SB (2012) Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep 12:267–275

    Article  CAS  PubMed  Google Scholar 

  • Winocur G, Vardy J, Binns MA, Kerr L, Tannock I (2006) The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav 85:66–75

    Article  CAS  PubMed  Google Scholar 

  • Winocur G, Binns MA, Tannock I (2011) Donepezil reduces cognitive impairment associated with anti-cancer drugs in a mouse model. Neuropharmacology 61:1222–1228

    Article  CAS  PubMed  Google Scholar 

  • Winocur G, Henkelman M, Wojtowicz JM, Zhang H, Binns MA, Tannock IF (2012) The effects of chemotherapy on cognitive function in a mouse model: a prospective study. Clin Cancer Res 18:3112–3121

    Article  CAS  PubMed  Google Scholar 

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24:5901–5908

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Kim JS, Song MS, Kim SH, Kang SS, Bae CS, Kim JC, Wang H, Shin T, Moon C (2010) Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits. Neurobiol Learn Mem 93:487–494

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Kim JS, Kim J, Kim SH, Kim JC, Kim J, Wang H, Shin T, Moon C (2011) Neurotoxicity of methotrexate to hippocampal cells in vivo and in vitro. Biochem Pharmacol 82:72–80

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Kim JS, Kim J, Jang S, Kim SH, Kim JC, Shin T, Wang H, Moon C (2012) Acute treatment with methotrexate induces hippocampal dysfunction in a mouse model of breast cancer. Brain Res Bull 89:50–56

    Article  CAS  PubMed  Google Scholar 

  • Yanovski JA, Packer RJ, Levine JD, Davidson TL, Micalizzi M, D'Angio G (1989) An animal model to detect the neuropsychological toxicity of anticancer agents. Med Pediatr Oncol 17:216–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare that the experiments performed in this manuscript are in compliance with the current laws of The Netherlands.

Funding

This research was funded by the Dutch Cancer Society, grant number NKI 2010-4829.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Schagen.

Additional information

The authors A.B. Smit and S.B. Schagen have equal contribution.

Appendices

Appendices

Fig. 14
figure 14

Mean duration per long arrest during the light phase in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Doxorubicin 10 mg/kg increased the mean duration per long arrest during the light phase compared with control animals short-term after treatment (p < 0.05). These effects were not present long-term after treatment

Fig. 15
figure 15

Average velocity of the 95th percentile fastest long movement segments in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Docetaxel (p < 0.05), doxorubicin (both dosages p < 0.001), and topotecan (p < 0.05) decreased the average velocity of the 95th percentile fastest long movement segments compared with control animals short-term after treatment. These effects were not present long-term after treatment

Fig. 16
figure 16

Cut-off value to separate short and long arrests in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Both dosages of doxorubicin increased the cut-off value compared with control animals (5 mg/kg p < 0.05, 10 mg/kg p < 0.001) short-term after treatment. These effects were not present long-term after treatment

Fig. 17
figure 17

Cut-off value to separate short and long movements in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Cyclophosphamide (p < 0.05), docetaxel (p = 0.005), doxorubicin (both dosages p < 0.001), 5-FU (p < 0.05), MTX (500 mg/kg p < 0.01), and topotecan (p < 0.05) decreased the cut-off value to separate short and long movements compared with control animals short-term after treatment. This effect was reversed long-term after treatment with topotecan (p < 0.001)

Fig. 18
figure 18

Cumulative duration of long shelter visits during the dark phase in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Docetaxel increased the cumulative duration of long shelter visits compared with control animals (p < 0.05) short-term after treatment. These effects were not present long-term after treatment

Fig. 19
figure 19

The fraction of shelter visits with duration longer than long shelter visit threshold in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Doxorubicin (10 mg/kg) increased the fraction of long shelter visits compared with control animals (p < 0.01) short-term after treatment. These effects were not present long-term after treatment

Fig. 20
figure 20

Cut-off value to separate intermediate and long shelter visits in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Doxorubicin (5 mg/kg, p < 0.05) increased the cut-off value to separate intermediate and long shelter visits compared with control animals short-term after treatment. Long-term after treatment, cyclophosphamide increased the cut-off value to separate intermediate and long shelter visits compared with control animals (p < 0.05)

Fig. 21
figure 21

Cumulative duration of activity (seconds) during the dark phase in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Docetaxel treatment decreased the cumulative duration of activity compared with control animals (p < 0.05) short-term after treatment. Long-term after treatment, cyclophosphamide treatment decreased the cumulative duration of activity compared with control animals (p < 0.05)

Fig. 22
figure 22

Mean duration per activity bout (seconds) during the dark phase in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Both cyclophosphamide and doxorubicin (10 mg/kg) treatment increased the mean duration per activity bout compared with control animals (both p < 0.05) short-term after treatment. These effects were not present long-term after treatment

Fig. 23
figure 23

Cumulative number of visits to OnShelter zone (frequency) during the dark phase in the automated home cage short- and long-term after treatment; error bars represent standard error of the mean. Open bar: control, grey horizontal striped bar: cyclophosphamide, black horizontal striped bar: docetaxel, grey diagonal striped bar: doxorubicin 5 mg/kg, black diagonal striped bar: doxorubicin 10 mg/kg, grey vertical striped bar: 5-FU, black vertical striped bar: MTX 250 mg/kg, grey bar: MTX 500 mg/kg, black bar: topotecan. Both dosages of doxorubicin decreased the cumulative number of visits to the OnShelter zone compared with control animals (5 mg/kg, p = 0.005; 10 mg/kg, p < 0.05) short-term after treatment. These effects were not present long-term after treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seigers, R., Loos, M., Van Tellingen, O. et al. Cognitive impact of cytotoxic agents in mice. Psychopharmacology 232, 17–37 (2015). https://doi.org/10.1007/s00213-014-3636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3636-9

Keywords

Navigation