Skip to main content
Log in

WY14643 produces anti-depressant-like effects in mice via the BDNF signaling pathway

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Current anti-depressants are clinically effective only after several weeks of administration and always produce side effects.

Objectives

WY14643 is a selective agonist of peroxisome proliferator-activated receptor-α with neuroprotective and neurotrophic effects. Here, we investigated the anti-depressant effects of WY14643 in mice models of depression.

Methods

We assessed the anti-depressant effects of WY14643 in the forced swim test (FST), tail suspension test (TST) and chronic social defeat stress (CSDS) model. Western blotting and immunohistochemistry studies were further performed to detect the effects of WY14643 on the brain-derived neurotrophic factor (BDNF) signaling pathway and hippocampal neurogenesis. The anti-BDNF antibody, BDNF signaling inhibitor, and tryptophan hydroxylase inhibitor were also used to explore the anti-depressant mechanisms of WY14643.

Results

WY14643 exhibited robust anti-depressant effects in the FST and TST and also protected against the CSDS stress in mice models. Moreover, WY14643 reversed the stress-induced elevation of corticosterone, deficiency of BDNF signaling pathway, and hippocampal neurogenesis. Blockade of BDNF signaling cascade, not the monoaminergic system, abolished all the anti-depressant effects of WY14643.

Conclusions

These data provide the first evidence that WY14643 exerts anti-depressant-like activity through promoting the BDNF signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

ANOVA:

Analysis of variance

BDNF:

Brain-derived neurotrophic factor

CMS:

Chronic mild stress

CREB:

cAMP response element-binding protein

CSDS:

Chronic social defeat stress

DCX:

Doublecortin

DG:

Dendrite gyrus

ERK:

Extracellular regulated protein kinase

FST:

Forced swimming test

mPFC:

Medial prefrontal cortex

PCPA:

p-Chlorophenylalanine methyl ester

PPAR-α:

Peroxisome proliferator-activated receptor-α

5-HT:

Serotonin

SSRIs:

Selective serotonin reuptake inhibitors

TMP:

Tetramethylpyrazine

TrkB:

Tyrosine kinase B

TST:

Tail suspension test

References

  • Bento-Abreu A, Tabernero A, Medina JM (2007) Peroxisome proliferator-activated receptor-alpha is required for the neurotrophic effect of oleic acid in neurons. J Neurochem 103:871–881

    Article  CAS  PubMed  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  CAS  PubMed  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Sci 311:864–868

    Article  CAS  Google Scholar 

  • Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59:1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 16:9–21

    Article  CAS  PubMed  Google Scholar 

  • Braun A, Lommatzsch M, Neuhaus-Steinmetz U, Quarcoo D, Glaab T, McGregor GP, Fischer A, Renz H (2004) Brain-derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br J Pharmacol 141:431–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107:22687–22692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll BJ, Curtis GC, Mendels J (1976) Cerebrospinal fluid and plasma free cortisol concentrations in depression. Psychol Med 6:235–244

    Article  CAS  PubMed  Google Scholar 

  • Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, Katakowski M, Lu M, Chopp M (2005) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab 25:281–290

    Article  PubMed Central  PubMed  Google Scholar 

  • Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radical Bio Med 41:1619–1619

    Article  CAS  Google Scholar 

  • Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, Cook MN, Dunning JP, Price MP, Rainier JD, Liu ZQ, Light AR, Langbehn DR, Wemmie JA (2009) Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 29:5381–5388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7

    Article  PubMed  Google Scholar 

  • Gass P, Riva MA (2007) CREB, neurogenesis and depression. Bioessays 29:957–961

    Article  CAS  PubMed  Google Scholar 

  • Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63

    Article  CAS  PubMed  Google Scholar 

  • Hinze-Selch D, Koch JM, Aldenhoff JB, Huchzermeier C (2003) Neurotrophic factors and the regulation of CREB as a marker and putative predictor of treatment response in major depression. Pharmacopsychiatry 36:235–235

    Article  Google Scholar 

  • Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR, Duman RS (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476–1482

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen JPR, Medvedev IO, Caron MG (2012) The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2(Arg)439(His) knockin mouse. Philos T R Soc B 367:2444–2459

    Article  CAS  Google Scholar 

  • Jevtovic S, Karlovic D, Mihaljevic-Peles A, Seric V, Vrkic N, Jaksic N (2011) Serum brain-derived neurotrophic factor (BDNF): the severity and symptomatic dimensions of depression. Psychiatr Danub 23:363–369

    CAS  PubMed  Google Scholar 

  • Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG (2012) Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 166:1872–1887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang B, Wang W, Wang F, Hu ZL, Xiao JL, Yang S, Zhang J, Peng XZ, Wang JH, Chen JG (2013) The stability of NR2B in the nucleus accumbens controls behavioral and synaptic adaptations to chronic stress. Biol Psychiatry 74:145–155

    Article  CAS  PubMed  Google Scholar 

  • Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Bruning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nat 455:894–902

    Article  CAS  Google Scholar 

  • Lagace DC, Donovan MH, DeCarolis NA, Farnbauch LA, Malhotra S, Berton O, Nestler EJ, Krishnan V, Eisch AJ (2010) Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci U S A 107:4436–4441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS (2008) Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res 86:2168–2178

    Article  CAS  PubMed  Google Scholar 

  • McGrath PJ, Stewart JW, Fava M, Trivedi MH, Wisniewski SR, Nierenberg AA, Thase ME, Davis L, Biggs MM, Shores-Wilson K, Luther JF, Niederehe G, Warden D, Rush AJ (2006) Tranylcypromine versus venlafaxine plus mirtazapine following three failed antidepressant medication trials for depression: a STAR*D report. Am J Psychiatr 163:1531–1541

    Article  PubMed  Google Scholar 

  • Muller CJ, Groticke I, Bankstahl M, Loscher W (2009) Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Exp Neurol 219:284–297

    Article  PubMed  Google Scholar 

  • Peeraully T, Kumar P, Yi Z, Tan EK (2012) Brain-derived neurotrophic factor (BDNF) polymorphisms and risk of Parkinson’s disease. Movement Disord 27:S465–S465

    Article  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146

    Article  PubMed  Google Scholar 

  • Power RA, Lecky-Thompson L, Fisher HL, Cohen-Woods S, Hosang GM, Uher R, Powell-Smith G, Keers R, Tropeano M, Korszun A, Jones L, Jones I, Owen MJ, Craddock N, Craig IW, Farmer AE, McGuffin P (2013) The interaction between child maltreatment, adult stressful life events and the 5-HTTLPR in major depression. J Psychiatr Res 47:1032–1035

    Article  PubMed  Google Scholar 

  • Razzoli M, Domenici E, Carboni L, Rantamaki T, Lindholm J, Castren E, Arban R (2011) A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes Brain Behav 10:424–433

    Article  CAS  PubMed  Google Scholar 

  • Rees WD, McNeil CJ, Maloney CA (2008) The roles of PPARs in the fetal origins of metabolic health and disease. Ppar Res 2008:459030

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856

    Article  PubMed  Google Scholar 

  • Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K (2013) Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell Rep 4:724–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Sci 301:805–809

    Article  CAS  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391–418

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz AJ, Greenberg ME (2003) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  Google Scholar 

  • Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, Saito H, Takemoto H, Houkin K, Kuroda S (2014) Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabil Neural Repair. doi:10.1177/1545968314525856

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacol (Berl) 85:367–370

    Article  CAS  Google Scholar 

  • Stokes PE (1995) The potential role of excessive cortisol induced by HPA hyperfunction in the pathogenesis of depression. Eur Neuropsychopharmacol 5(Suppl):77–82

    Article  CAS  PubMed  Google Scholar 

  • Sulser F, Watts J, Brodie BB (1962) On the mechanism of antidepressant action of imipramine-like drugs. Ann N Y Acad Sci 96:279–288

    Article  CAS  PubMed  Google Scholar 

  • Tang WX, Wang LK, Wang YQ, Zong ZJ, Gao ZX, Liu XS, Shen YJ, Shen YX, Li YH (2014) Peroxisome proliferator-activated receptor-alpha activation protects against endoplasmic reticulum stress-induced HepG2 cell apoptosis. Mol Cell Biochem 385:179–190

    Article  CAS  PubMed  Google Scholar 

  • Tapley P, Lamballe F, Barbacid M (1992) K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7:371–381

    CAS  PubMed  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    Article  CAS  PubMed  Google Scholar 

  • Vicente B, Kohn R, Rioseco P, Saldivia S, Levav I, Torres S (2006) Lifetime and 12-month prevalence of DSM-III-R disorders in the Chile psychiatric prevalence study. Am J Psychiatr 163:1362–1370

    Article  PubMed  Google Scholar 

  • Yan HC, Qu HD, Sun LR, Li SJ, Cao X, Fang YY, Jie W, Bean JC, Wu WK, Zhu XH, Gao TM (2010) Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int J Neuropsychopharmacol 13:623–633

    Article  CAS  PubMed  Google Scholar 

  • Young EA, Altemus M, Lopez JF, Kocsis JH, Schatzberg AF, DeBattista C, Zubieta JK (2004) HPA axis activation in major depression and response to fluoxetine: a pilot study. Psychoneuroendocrinology 29:1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X, Bean JC, Chen LH, Qin XH, Liu JH, Bai XC, Mei L, Gao TM (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30:12653–12663

    Article  CAS  PubMed  Google Scholar 

  • Zonana J, Gorman JM (2005) The neurobiology of postpartum depression. Cns Spectr 10:792–799

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China to Professor Wei Zhang (No. 81070197) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author contributions

Bo Jiang, Chao Huang, and Wei Zhang conceived and designed the study. Bo Jiang, Chao Huang, and Li-Juan Tong performed the experiments. Bo Jiang and Wei Zhang wrote the manuscript. Bo Jiang, Qing Zhu, and Wei Zhang reviewed and edited the manuscript. All authors read and approved the manuscript.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Electronic supplementary material

Supplementary Material

The supplemental material for this article include one figure, which is available online

ESM 1

(GIF 94 kb)

High resolution (TIFF 2277 kb)

ESM 2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Huang, C., Zhu, Q. et al. WY14643 produces anti-depressant-like effects in mice via the BDNF signaling pathway. Psychopharmacology 232, 1629–1642 (2015). https://doi.org/10.1007/s00213-014-3802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3802-0

Keywords

Navigation