Skip to main content

Advertisement

Log in

Nicotinic acetylcholine receptor (nACh-R) agonist-induced changes in brain monoamine turnover in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the effects of nicotinic acetylcholine receptor (nACh-R) agonists such as (−)-nicotine and related compounds on brain monoamine turnover. A single administration of (−)-nicotine (0.04, 0.2, 1.0, and 5.0 mg/kg SC) increased both noradrenaline (NA) and dopamine (DA) turnover in a dose-dependent manner, and the maximum effects were achieved 30 min after treatment with (−)-nicotine (1.0 mg/kg). The effect of (−)-nicotine on serotonin (5-HT) turnover was complicated; 5-HT turnover was increased at a low dose of (−)-nicotine (0.04 mg/kg) but decreased at a high dose (1.0 mg/kg). The (−)-nicotine (1.0mg/kg)-induced changes in monoamine turnover were blocked by pretreatment with the centrally acting nACh-R channel blocker mecamylamine (2.0 mg/kg IP) but not by hexamethonium (2.0 mg/kg IP). These findings indicate that systemically administered (−)-nicotine can enhance brain NA and DA turnover and affect 5-HT turnover, both of which are mediated by central nACh-R. The changes in the monoamine turnover induced by (±)-anabasine were similar to those induced by (−)-nicotine, while (−)-lobeline and (−)-cytisine had little effect, and l,l-dimethyl-4-phenyl-piperazinium (DMPP) increased NA and 5-HT turnover but not DA turnover at all doses tested. (S)-3-Methyl-5-(l-methyl-2-pyrrolidinyl)isoxazole (ABT-418), a selective neuronal nACh-R agonist, increased NA, DA and 5-HT turnover, but had a weaker effect on DA turnover than NA and 5-HT turnover. In addition, 9-amino-l,2,3,4-tetrahydroacridine (THA), an acetylcholine esterase inhibitor, also increased monoamine turnover in the brain. Pretreatment with mecamylamine completely blocked the THA-induced increase in NA and 5-HT turnover, but not in DA turnover, suggesting that the nACh-R system is involved in the THA-induced increase in brain NA and 5-HT turnover. On the other hand, (−)-cytisine, a partial agonist for the β2 subunit containing nACh-R, completely inhibited the nACh-R agonist-and THA-induced increases in NA turnover, but not in DA turnover, and normalized the changes in 5-HT turnover. In conclusion, the subtypes of nACh-Rs mediating DA turnover may be different from those mediating NA and 5-HT turnover in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adem A, Jossan SS, Oreland L (1989) Tetrahydroaminoacridine inhibits human and rat brain monoamine oxidase. Neurosci Lett 107:313–317

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ, Arneric SP (1994) Nicotinic receptor binding of [3H]cytisine, [3H]nicotine and [3H]methylcarbamylcholine in rat brain. Eur J Pharmacol 253:261–267

    Article  PubMed  CAS  Google Scholar 

  • Andersson K, Fuxe K, Eneroth P, Gustafsson J-A, Agnati LF (1979) Mecamylamine induced blockade of nicotine induced inhibition of gonadotopin an TSH secretion and nicotine induced increases of catecholamine turn over in rat hypothalamus. Acta Physiol Scand 479:27–29

    Google Scholar 

  • Arneric SP, Sullivan JP, Briggs CA, Donnelly-Roberts D, Anderson DJ, Raszkiewiez JL, Huges ML, Cadman ED, Adams P, Garvey DS, Wasicak JT, Williams M (1994) (S)-3-Methyl-5-(l-methyl-2-pyrrolidinyl)isoxazole (ABT-418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: I. in vitro characterization. J Pharmacol Exp Ther 270:310–318

    PubMed  CAS  Google Scholar 

  • Boulter J, Connolly J, Deneris E, Goldman D, Heinemann S, Patrick J (1987) Functional expression of two neural nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci USA 84:7763–7767

    Article  PubMed  CAS  Google Scholar 

  • Brioni JD, Kim DJB, O’Neill AB, Williams JEG, Decker MW (1994) Clozapine attenuates the discriminative stimulus properties of ( −)nicotine. Brain Res 643:1–9

    Article  PubMed  CAS  Google Scholar 

  • Court JA, Perry EK, Spurden D, Lloyd S, Gillespie JI, Whiting P, Barlow R (1994) Comparison of the binding of nicotinic agonists to receptors from human and rat cerebral cortex and from chick brain (α4β2) transfected into mouse fibroblasts with ion channel activity. Brain Res 667:118–122

    Article  PubMed  CAS  Google Scholar 

  • Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulter J, Ballivet M, Bertrand D (1990) α5, α3 and non-α3: three clustered avian genes encoding neuronal nicotinic acetylcholine receptor releated subunits. J Biol Chem 265: 17560–17567

    PubMed  CAS  Google Scholar 

  • Decker MW, Brioni JD, Sullivan JP, Buckley MJ, Radek RJ, Raszkiewiez JL, Kang LH, Kim DJB, Giardina WJ, Wasicak JT, Garvey DS, Williams M, Arneric SP (1994) (S)-3-Methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT 418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: II. in vitro characterization. J Pharmacol Exp Ther 270: 319–328

    PubMed  CAS  Google Scholar 

  • Decker MW, Brioni JD, Bannon AW, Arneric SP (1995) Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics. Life Sci 56:545–570

    Article  PubMed  CAS  Google Scholar 

  • Drukarch B, Kits KS, Van Der Meer EG, Lodder JC, Stoof JC (1987) 9-Amino-l,2,3,4-tetrahydroacridine (THA), an alleged drug for the treatment of Alzheimer’s disease, inhibits acetylcholine esterase activity and slow outward K+ current. Eur J Pharmacol 141:153–157

    Article  PubMed  CAS  Google Scholar 

  • Drukarch B, Leysen JE, Stoof JG (1988) Further analysis of the neuropharmacological profile of 9-amino-l,2,3,4-tetrahy-droacridine (THA), an alleged drug for the treatment of Alzheimer’s disease. Life Sci 42:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is upregulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Fuxe K, Everitt BJ, Hökfelt T (1979) On the action of nicotine and cotinine on central 5-hydroxy-tryptamine neurons. Pharmacol Biochem Behav 10:671–677

    Article  PubMed  CAS  Google Scholar 

  • Garvey DS, Wasicak J, Decker MW, Brioni JD, Sullivan JP, Carrera GM, Holladay MH, Arneric SP, Williams M (1994) Novel isoxazoles which interact with brain cholinergic channel receptors that have intrinsic cognitive enhancing and anxiolytic activities. J Med Chem 37: 1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59:848–856

    Article  PubMed  CAS  Google Scholar 

  • Hagan JJ, Jansen JHM, Broekkamp CLM (1989) Hemicholinium-3 impairs spatial learning and the deficit is reversed by cholinomimetics. Psychopharmacology 98:347–356

    Article  PubMed  CAS  Google Scholar 

  • Heal DJ, Prow MR, Buckett WR (1989) Measurement of 3-methoxy-4-hydroxyphenylglycol (MHPG) in mouse brain by h.p.l.c. with electrochemical detection, as an index of noradrenaline utilisation and presynaptic α2-adrenoceptor function. Br J Pharmacol 96:547–556

    PubMed  CAS  Google Scholar 

  • Imperato A, Mulas A, Dichiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338

    Article  PubMed  CAS  Google Scholar 

  • Jones GMM, Sahakian BJ, Levy R, Warburnton DM, Gray JA (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108:485–494

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Amano H, Kurahashi K, Misu Y (1989) Nicotine-induced regional changes in brain noradrenaline and dopamine turnover in rats. J Pharmacobiodyn 12:107–112

    PubMed  CAS  Google Scholar 

  • Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology 108:417–431

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Eisner B (1994) Nicotine interactions with dopamine agonists: effects on working memory function. Drug Dev Res 31:32–37

    Article  CAS  Google Scholar 

  • Marks MJ, Farnham DA, Grady SR, Collins AC (1993) Nicotinic receptor function determined by stimulation of rubidium efflux from mouse brain synaptosomes. J Pharmacol Exp Ther 264:542–552

    PubMed  CAS  Google Scholar 

  • Meyer EM, deFiebre CM, Hunter BE, Simpkins CE, Fraumorth N, deFiebre NEC (1994) Effects of anabaseine-related analoges on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev Res 31:127–134

    Article  CAS  Google Scholar 

  • Mifsud J-C, Hernandez L, Hoebel BG (1989) Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis. Brain Res 478:365–367

    Article  PubMed  CAS  Google Scholar 

  • Morgan WW, Pfeil KA (1979) Mecamylamine blockade of nicotine enhanced noradrenaline turnover in rat brain. Life Sci 24:417–420

    Article  PubMed  CAS  Google Scholar 

  • Nef P, Oneyser C, Alliod C, Couturier S, Ballivet M (1988) Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J 7:595–601

    PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Thompson K, Tariot PN, Weingartner H, Mueller ER, Cohen RM, Murphy DL (1986) Intravenous nicotine in patient with Alzheimer’s disease. Am J Psychiatry 143:1494–1495

    PubMed  CAS  Google Scholar 

  • Newhouse PA, Potter A, Corwin J, Lenox R (1994) Age-related effects of the nicotine antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology 10:93–107

    PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svenssin TH (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44

    Article  PubMed  CAS  Google Scholar 

  • Pabreza LA, Dhawan S, Kellar KJ (1990) [3H]Cytisine binding to nicotinic cholinergic receptors in brain. Mol Pharmacol 39:9–12

    Google Scholar 

  • Papke RL, Heinemann SF (1994) Partial agonist properties of cyti-sine on neuronal nicotinic receptors containing the β2 subunit. Mol Pharmacol 45:142–149

    PubMed  CAS  Google Scholar 

  • Pratt J, Stolerman I, Garcha H, Giardini V, Feyerabend C (1983) Discriminative stimulus properties of nicotine: further evidence for mediation at a cholinergic receptor. Psychopharmacology 81:54–60

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro EB, Bettiker RL, Bogdanov M, Wurtman RJ (1993) Effects of systemic nicotine on serotonin release in rat brain. Brain Res 621:311–318

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen M, Sirvio J, Riekkinen Jr P (1993) Pharmacological consequences of nicotinergic plus serotonergic manipulations. Brain Res 622:139–146

    Article  PubMed  CAS  Google Scholar 

  • Robinson TN, De Souza RJ, Cross AJ, Green AR (1989) The mechanism of tetrahydroaminoacridine-evoked release of endogenous 5-hydroxytryptamine and dopamine from rat brain tissue prisms. Br J Pharmacol 98:1127–1136

    PubMed  CAS  Google Scholar 

  • Roth KA, Stecen LM, Barchas JD (1982) Nicotinic-catecholamin-ergic interactions in rat brain: evidence for cholinergic nicotinic and muscarinic interactions with hypothalamic epinephrine. J Pharmacol Exp Ther 221:416–420

    PubMed  CAS  Google Scholar 

  • Sacaan AI, Dunlop JL, Lloyd GK (1995) Pharmacological characterization of neuronal acetylcholine gated ion channel receptor-mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices. J Pharmacol Exp Ther 274:224–230

    PubMed  CAS  Google Scholar 

  • Sahakian B, Jones G, Levy R, Gray J, Warburton D (1989) The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of Alzheimer’s type. Br J Psychiatry 154:797–800

    Article  PubMed  CAS  Google Scholar 

  • Sharp BM, Matta SG (1993) Detection by in vivo microdialysis of nicotine-induced norepinephrine secretion from the hypothalamic paraventricular nucleus of freely moving rats: dose-dependency and desensitization. Endocrinology 133: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Stolerman I, Garcha H, Pratt J, Kumar R (1984) Role of training dose in discrimination of nicotine and related compounds by rats. Psychopharmacology 84:413–419

    Article  PubMed  CAS  Google Scholar 

  • Tani Y, Ishihara T (1990) Simultaneous measurement of tetrahy-drobiopterin (THBP) and biogenic amines by liquid chromatography with electrochemical detection. Life Sci 46: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris E, Swanson L, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptors. Science 240:330–334

    Article  PubMed  CAS  Google Scholar 

  • Westfall TC (1974) Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacology 13:693–700

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kato Y, Imura H (1980) Nicotine-induced release of noradrenaline from hypothalamic synaptosomes. Brain Res 182:361–368

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, Y., Saito, K., Tsuneyoshi, A. et al. Nicotinic acetylcholine receptor (nACh-R) agonist-induced changes in brain monoamine turnover in mice. Psychopharmacology 129, 225–232 (1997). https://doi.org/10.1007/s002130050184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002130050184

Key words

Navigation