Skip to main content

Advertisement

Log in

Comparison of extraction efficiencies and LC–MS–MS matrix effects using LLE and SPE methods for 19 antipsychotics in human blood

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Antipsychotic drugs are frequently associated with sudden death investigations. Detection of these drugs is necessary to establish their use and possible contribution to the death. LC–MS(MS) methods are common; however accurate and precise quantification is assured by using validated methods. This study compared extraction efficiency and matrix effects using common liquid–liquid and solid-phase extraction procedures in both ante-mortem and post-mortem specimen using LC–MS–MS. Extraction efficiencies and matrix effects were determined in five different blank blood specimens of each blood type. The samples were extracted using a number of different liquid–liquid extraction methods and compared with a standard mixed-mode solid-phase extraction method. Matrix effects were determined using a post-extraction addition approach—the blank blood specimens were extracted as described above and the extracts were reconstituted in mobile phase containing a known amount of analytes. The extraction comparison of ante-mortem and post-mortem blood showed considerable differences, in particular the extraction efficiency was quite different between ante-mortem and post-mortem blood. Quantitative methods used for determination of antipsychotic drugs in post-mortem blood should establish that there are no differences in extraction efficiency and matrix effects, particularly if using ante-mortem blood as calibrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jindal R, MacKenzie EM, Baker GB, Yeragani VK (2005) J Psychiatry Neurosci 30:393–395

    Google Scholar 

  2. Jones AW (2006) Toxicol Rev 25:15–35

    Article  CAS  Google Scholar 

  3. Hoiseth G, Karinen R, Christophersen AS, Olsen L, Normann PT, Morland J (2007) Forensic Sci Int 165:41–45

    Article  CAS  Google Scholar 

  4. Helander A, Dahl H (2005) Clin Chem 51:1728–1730

    Article  CAS  Google Scholar 

  5. Krivankova L, Caslavska J, Malaskova H, Gebauer P, Thormann W (2005) J Chromatogr A 1081:2–8

    Article  CAS  Google Scholar 

  6. Borucki K, Schreiner R, Dierkes J, Jachau K, Krause D, Westphal S, Wurst FM, Luley C, Schmidt-Gayk H (2005) Alcohol Clin Exp Res 29:781–787

    Article  CAS  Google Scholar 

  7. Killian JG, Kerr K, Lawrence C, Celermajer DS (1999) Lancet 354:1841–1845

    Article  Google Scholar 

  8. Morini L, Politi L, Zucchella A, Polettini A (2007) Clin Chim Acta 376:213–219

    Article  CAS  Google Scholar 

  9. Kirchherr H, Kuhn-Velten WN (2006) J Chromatogr B 843:100–113

    Article  CAS  Google Scholar 

  10. Josefsson M, Kronstrand R, Andersson J, Roman M (2003) J Chromatogr B 789:151–167

    Article  CAS  Google Scholar 

  11. Kratzsch C, Peters FT, Kraemer T, Weber AA, Maurer HH (2003) J Mass Spectrom 38:283–295

    Article  CAS  Google Scholar 

  12. Maurer HH (2004) Clin Chem Lab Med 42:1310–1324

    Article  CAS  Google Scholar 

  13. Peters FT, Drummer OH, Musshoff F (2007) Forensic Sci Int 165:216–224

    Article  CAS  Google Scholar 

  14. Maurer HH (1998) J Chromatogr B 713:3–25

    Article  CAS  Google Scholar 

  15. Souverain S, Rudaz S, Veuthey JL (2004) J Chromatogr A 1058:61–66

    CAS  Google Scholar 

  16. Chin C, Zhang ZP, Karnes HT (2004) J Pharm Biomed Anal 35:1149–1167

    Article  CAS  Google Scholar 

  17. Maurer HH (2007) Anal Bioanal Chem 388:1315–1325

    Article  CAS  Google Scholar 

  18. Buhrman DL, Price PI, Rudewicz PJ (1996) J Am Soc Mass Spectrom 7:1099

    Article  CAS  Google Scholar 

  19. Bonfiglio R, King RC, Olah TV, Merkle K (1999) Rapid Commun Mass Spectrom 13:1175–1185

    Article  CAS  Google Scholar 

  20. Dams R, Huestis MA, Lambert WE, Murphy CM (2003) J Am Soc Mass Spectrom 14:1290–1294

    Article  CAS  Google Scholar 

  21. Mueller C, Schaefer P, Stoertzel M, Vogt S, Weinmann W (2002) J Chromatogr B 773:47

    Article  Google Scholar 

  22. Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR (2007) J Chromatogr B 852:22–34

    Article  CAS  Google Scholar 

  23. Matuszewski BK, Constanzer ML, Chavez-Eng CM (1998) Anal Chem 70:882–889

    Article  CAS  Google Scholar 

  24. Robertson MD, McMullin MM (2000) J Forensic Sci 45:418–421

    CAS  Google Scholar 

  25. Roman M, Kronstrand R, Lindstedt D, Josefsson M (2008) J Anal Toxicol 32:147–155

    CAS  Google Scholar 

  26. Sporkert F, Augsburger M, Giroud C, Brossard C, Eap CB, Mangin P (2007) Forensic Sci Int 170:193–199

    Article  CAS  Google Scholar 

  27. Gerber JE, Cawthon B (2000) Am J Forensic Med Pathol 21:249–251

    Article  CAS  Google Scholar 

  28. Anderson DT, Fritz KL (2000) J Anal Toxicol 24:300–304

    CAS  Google Scholar 

  29. Jenkins AJ, Sarconi KM, Raaf HN (1998) J Anal Toxicol 22:605–609

    CAS  Google Scholar 

  30. Tracqui A, Kintz P, Cirimele V, Berthault F, Mangin P, Ludes B (1997) J Anal Toxicol 21:314–318

    CAS  Google Scholar 

  31. Beyer J, Peters FT, Kraemer T, Maurer HH (2007) J Mass Spectrom 42:150–160

    Article  CAS  Google Scholar 

  32. Beyer J, Peters FT, Kraemer T, Maurer HH (2007) J Mass Spectrom 42:621–633

    Article  CAS  Google Scholar 

  33. Rodda KE, Dean B, McIntyre IM, Drummer OH (2006) Forensic Sci Int 157:121–130

    Article  CAS  Google Scholar 

  34. Kratzsch C, Tenberken O, Peters FT, Weber AA, Kraemer T, Maurer HH (2004) J Mass Spectrom 39:856–872

    Article  CAS  Google Scholar 

  35. Maurer HH, Kratzsch C, Kraemer T, Peters FT, Weber AA (2002) J Chromatogr B 773:63–73

    Article  CAS  Google Scholar 

  36. Lin SN, Chang Y, Moody DE, Foltz RL (2004) J Anal Toxicol 28:443–448

    CAS  Google Scholar 

  37. Hopenwasser J, Mozayani A, Danielson TJ, Harbin J, Narula HS, Posey DH, Shrode PW, Wilson SK, Li R, Sanchez LA (2004) J Anal Toxicol 28:264–267

    CAS  Google Scholar 

  38. Gammans RE, Kerns EH, Bullen WW (1985) J Chromatogr 345:285–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saar, E., Gerostamoulos, D., Drummer, O.H. et al. Comparison of extraction efficiencies and LC–MS–MS matrix effects using LLE and SPE methods for 19 antipsychotics in human blood. Anal Bioanal Chem 393, 727–734 (2009). https://doi.org/10.1007/s00216-008-2498-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2498-6

Keywords

Navigation