Skip to main content
Log in

Bioassays for bomb-makers: proof of concept

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Clandestine bomb-makers are exposed to significant amounts of explosives and allied materials. As with any ingested xenobiotic substance, these compounds are subject to biotransformation. As such, the potential exists that characteristic suites of biomarkers may be produced and deposited in matrices that can be exploited for forensic and investigative purposes. However, before such assays can be developed, foundational data must be gathered regarding the toxicokinetics, fate, and transport of the resulting biomarkers within the body and in matrices such as urine, hair, nails, sweat, feces, and saliva. This report presents an in vitro method for simulation of human metabolic transformations using human liver microsomes and an assay applicable to representative nitro-explosives. Control and metabolized samples of TNT, RDX, HMX, and tetryl were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and biomarkers identified for each. The challenges associated with this method arise from solubility issues and limitations imposed by instrumentation, specifically, modes of ionization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MRM:

multiple-reaction monitoring

K ow :

octanol/water partition coefficient

4-ADNT:

4-amino-2,6-dinitrotoluene

VP:

vapor pressure

HLMs:

human liver microsomes

References

  1. Gaurav D, Malik AK, Rai PK (2007) Crit Rev Anal Chem 37:227

    Article  CAS  Google Scholar 

  2. Nambayah M, Quickenden TI (2004) Talanta 63:461

    Article  CAS  Google Scholar 

  3. Pumera M (2008) Electrophoresis 29:269

    Article  CAS  Google Scholar 

  4. Schulte-Ladbeck R, Vogel M, Karst U (2006) Anal Bioanal Chem 386:559

    Article  CAS  Google Scholar 

  5. Tagliaro F, Bortolotti F (2008) Electrophoresis 29:260

    Article  CAS  Google Scholar 

  6. Wang J (2007) Electroanalysis 19:415

    Article  CAS  Google Scholar 

  7. de Oliveira CDR, Roehsig M, de Almeida RM et al (2007) Curr Pharm Anal 3:95

    Article  Google Scholar 

  8. Gallardo E, Queiroz JA (2008) Biomed Chromatogr 22:795

    Article  CAS  Google Scholar 

  9. Langman LJ, Kapur BM (2006) Clin Biochem 39:498

    Article  CAS  Google Scholar 

  10. Mullangi R, Agrawal S, Srinivas NR (2009) Biomed Chromatogr 23:3

    Article  CAS  Google Scholar 

  11. Palmeri A, Pichini S, Pacifici R et al (2000) Clin Pharmacokinet 38:95

    Article  CAS  Google Scholar 

  12. Oxley JC, Smith JL, Kirschenbaum LJ et al (2008) J Forensic Sci 53:690

    Article  CAS  Google Scholar 

  13. Efremenko I, Zach R, Zeiri Y (2007) J Phys Chem C 111:11903

    Article  CAS  Google Scholar 

  14. Boumba VA, Ziavrou KS, Vougiouklakis T (2006) Int J Toxicol 25:143

    Article  CAS  Google Scholar 

  15. Fan VS, Savage RE, Buckley TJ (2007) Toxicol Mech Methods 17:295

    Article  CAS  Google Scholar 

  16. Potts RO, Guy RH (1992) Pharm Res 9:663

    Article  CAS  Google Scholar 

  17. Reifenrath WG, Kammen HO, Palmer WG et al (2002) Toxicol Appl Pharmacol 182:160

    Article  CAS  Google Scholar 

  18. Reddy G, Allen NA, Major MA (2008) Toxicol Mech Methods 18:575

    Article  CAS  Google Scholar 

  19. Reifenrath WG, Kammen HO, Reddy G et al (2008) J Toxicol Env Health Part A 71:486

    Article  CAS  Google Scholar 

  20. Furge LL, Guengerich FP (2006) Biochem Mol Biol Educ 34:66

    Article  CAS  Google Scholar 

  21. Guengerich FP (2006) Aaps Journal 8:E101

    Article  CAS  Google Scholar 

  22. Lee MY, Dordick JS (2006) Curr Opin Biotechnol 17:619

    Article  CAS  Google Scholar 

  23. Isin EM, Guengerich FP (2008) Anal Bioanal Chem 392:1019

    Article  CAS  Google Scholar 

  24. Hodgson E, Rose RL (2007) Pharmacol Ther 113:420

    Article  CAS  Google Scholar 

  25. Wang YH, Li Y, Li YH et al (2006) J Phys Chem B 110:10139

    Article  CAS  Google Scholar 

  26. Lewis DFV (2003) Pharmacogenomics 4:387

    Article  CAS  Google Scholar 

  27. Guengerich FP (2001) Curr Drug Metab 2:93

    Article  CAS  Google Scholar 

  28. Guengerich FP (2001) Chem Res Toxicol 14:611

    Article  CAS  Google Scholar 

  29. Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K et al (2006) Eur J Pharm Sci 27:447

    Article  CAS  Google Scholar 

  30. Brandon EFA, Raap CD, Meijerman I et al (2003) Toxicol Appl Pharmacol 189:233

    Article  CAS  Google Scholar 

  31. Dalvie D, Obach RS, Kang P et al (2009) Chem Res Toxicol 22:357

    Article  CAS  Google Scholar 

  32. Plant N (2004) Drug Discov Today 9:328

    Article  CAS  Google Scholar 

  33. Leung KH, Yao M, Stearns R et al (1995) Chem-Biol Interact 97:37

    Article  CAS  Google Scholar 

  34. Sabbioni G, Liu YY, Yan HF et al (2005) Carcinogenesis 26:1272

    Article  CAS  Google Scholar 

  35. Bhushan B, Halasz A, Thiboutot S et al (2004) Biochem Biophys Res Commun 316:816

    Article  CAS  Google Scholar 

  36. Gorontzy T, Drzyzga O, Kahl MW et al (1994) Crit Rev Microbiol 20:265

    Article  CAS  Google Scholar 

  37. Spain JC (1995) Annu Rev Microbiol 49:523

    Article  CAS  Google Scholar 

  38. Yinon J (1990) Toxicity and metabolism of explosives. CRC, Boca Raton

    Google Scholar 

  39. Y. Kucukardali, H. V. Acar, S. Ozkan et al (2003) Accidental oral poisoning caused by RDX (cyclonite): a report of 5 cases GATA Haydarpasa Training Hospital, 81327 Uskudar, Istanbul, Turkey., pages 42-6

  40. von Moltke LL, Greenblatt DJ, Granda BW et al (1999) Br J Clin Pharmacol 48:89

    Article  Google Scholar 

  41. Hazardous Substances Database (HSDB) (2009) National Library of Medicine—Toxnet: Bethesda. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed: 18 Feb. 2009

  42. Tanaka E, Nakamura T, Terada T et al (2005) Basic Clin Pharmacol Toxicol 96:88

    Article  CAS  Google Scholar 

  43. Wen B, Coe KJ, Rademacher P et al (2008) Chem Res Toxicol 21:2393

    Article  CAS  Google Scholar 

  44. Beller HR, Tiemeier K (2002) Environ Sci Technol 36:2060

    Article  CAS  Google Scholar 

  45. Chen HW, Li M, Jin QH et al (2006) Chin J Anal Chem 34:839

    CAS  Google Scholar 

  46. Florian J, Gao L, Zhukhovskyy V et al (2007) J Am Soc Mass Spectrom 18:835

    Article  CAS  Google Scholar 

  47. Gapeev A, Sigman M, Yinon J (2003) Rapid Commun Mass Spectrom 17:943

    Article  CAS  Google Scholar 

  48. Major MA, Reddy G, Berge MA et al (2007) J Toxicol Environ Health A 70:1191

    Article  CAS  Google Scholar 

  49. Mathis JA, McCord BR (2005) Rapid Commun Mass Spectrom 19:99

    Article  CAS  Google Scholar 

  50. Pan XP, Zhang BH, Tian K et al (2006) Rapid Commun Mass Spectrom 20:2222

    Article  CAS  Google Scholar 

  51. Sigman ME, Armstrong PA, MacInnis JM et al (2005) Anal Chem 77:7434

    Article  CAS  Google Scholar 

  52. Song LG, Bartmess JE (2009) Rapid Commun Mass Spectrom 23:77

    Article  CAS  Google Scholar 

  53. Sabbioni G, Rumler R (2007) Biomarkers 12:559

    Article  CAS  Google Scholar 

  54. Sabbioni G, Sepai O, Norppa H et al (2007) Biomarkers 12:21

    Article  CAS  Google Scholar 

  55. Schmidt AC, Niehus B, Matysik FM et al (2006) Chromatographia 63:1

    Article  CAS  Google Scholar 

  56. Rawden HC, Carlile DJ, Tindall A et al (2005) Xenobiotica 35:603

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by funding from the National Institute of Justice, award number #2001-RC-CX-K003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne C. Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, S.C., Gayton-Ely, M. & Nida, C.M. Bioassays for bomb-makers: proof of concept. Anal Bioanal Chem 395, 401–409 (2009). https://doi.org/10.1007/s00216-009-2851-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2851-4

Keywords

Navigation