Skip to main content
Log in

Monolithic spin column extraction and GC-MS for the simultaneous assay of diquat, paraquat, and fenitrothion in human serum and urine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a method based on monolitic spin column extraction and gas chromatography–mass spectrometry as an analytical method for screening diquat (DQ), paraquat (PQ), and fenitrothion in serum and urine. This method is useful for clinical and forensic toxicological analyses. Recovery of DQ, PQ, and fenitrothion from serum and urine, spiked at concentrations between 0.1, 2.5, 20, and 45 μg/ml, ranged from 51.3% to 106.1%. Relative standard deviation percentages were between 3.3% and 14.8%. Detection and quantitation limits for serum and urine were 0.025 and 0.05 μg/ml, respectively, for DQ, 0.1 and 0.1 μg/ml, respectively, for PQ, and 0.025 and 0.05 μg/ml, respectively, for fenitrothion. Therefore, these compounds can be detected and quantified in the case of acute poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Copland GM, Kolin A, Shulman HS (1974) N Engl J Med 291:290–292

    Article  CAS  Google Scholar 

  2. Proudfoot AT, Stewart MS, Levitt T, Widdop B (1979) Lancet 8138:330–332

    Article  Google Scholar 

  3. Sawada Y, Yamamoto I, Hirokane T, Nagai Y, Satoh Y, Ueyama M (1988) Lancet 8598:1333

    Article  Google Scholar 

  4. Vinner E, Stievenart M, Humbert L, Mathieu D, Lhermitte M (2001) Biomed Chromatogr 15:342–347

    Article  CAS  Google Scholar 

  5. Itagaki T, Jason Lai S, Binder SR (1997) J Liq Chromatogr Relat Technol 20:3339–3350

    Article  CAS  Google Scholar 

  6. Gill R, Qua SC, Moffat AC (1983) J Chromatogr 255:483–490

    Article  CAS  Google Scholar 

  7. Ariffin MM, Anderson RA (2006) J Chromatogr B 842:91–97

    Article  CAS  Google Scholar 

  8. Wang KC, Chen SM, Hsu JF, Cheng SG, Lee CK (2008) J Chromatogr B 876:211–218

    Article  CAS  Google Scholar 

  9. Hara S, Sasaki N, Takase D, Shiotsuka S, Ogata K, Futagami K, Tamura K (2007) Anal Sci 23:523–526

    Article  CAS  Google Scholar 

  10. de Almeida RM, Yonamine M (2007) J Chromatogr B 853:260–264

    Article  Google Scholar 

  11. Yamashita M, Yamashita M, Tanaka J, Ando Y (1997) Vet Hum Toxicol 39:84–85

    CAS  Google Scholar 

  12. Groszek B, Pach J, Klys M (1995) Przegl Lek 52:271–274

    CAS  Google Scholar 

  13. Inoue S, Saito T, Suzuki Y, Iizuka S, Takazawa K, Akieda K, Yamamoto I, Inokuchi S (2008) Clin Toxicol 46:528–533

    Article  CAS  Google Scholar 

  14. Adachi N, Kinoshita H, Nishiguchi M, Takahashi M, Ouchi H, Minami T, Matsui K, Yamamura T, Motomura H, Ohtsu N, Yoshida S, Hishida S (2008) Forensic Toxicol 26:76–79

    Article  CAS  Google Scholar 

  15. Inoue S, Saito T, Miyazawa T, Mase H, Inokuchi S (2009) Forensic Toxicol 27:32–36

    Article  CAS  Google Scholar 

  16. Inoue S, Saito T, Mase H, Suzuki Y, Takazawa K, Yamamoto I, Inokuchi S (2007) J Pharm Biomed Anal 44:258–264

    Article  CAS  Google Scholar 

  17. Hernández F, Sancho JV, Pozo OJ (2004) J Chromatogr B 808:229–239

    Article  Google Scholar 

  18. Cho Y, Matsuoka N, Kamiya A (1997) Chem Pharm Bull 45:737–740

    CAS  Google Scholar 

  19. Bertolote JM, Fleischmann A, Eddleston M, Gunnell D (2006) Br J Psychiatry 189:201–203

    Article  CAS  Google Scholar 

  20. Seung KB, Young SS, Hee SC, Myoung YP (2007) Arch Pharm Res 30:235–239

    Article  Google Scholar 

  21. Pitarch E, Serrano R, López FJ, Hernández F (2003) Anal Bioanal Chem 376:189–197

    CAS  Google Scholar 

  22. Tsoukali H, Theodoridis G, Raikos N, Grigoratou I (2005) J Chromatogr B 822:194–200

    Article  CAS  Google Scholar 

  23. Beltran J, Pitarch E, Egea S, López FJ, Hernández F (2001) Chromatographia 54:757–763

    Article  CAS  Google Scholar 

  24. Saito T, Yamamoto R, Inoue S, Kishiyama I, Miyazaki S, Nakamoto A, Nishida M, Namera A, Inokuchi S (2008) J Chromatogr B 867:99–104

    Article  CAS  Google Scholar 

  25. Namera A, Nakamoto A, Nishida M, Saito T, Kishiyama I, Miyazaki S, Yahata M, Yashiki M, Nagao M (2008) J Chromatogr A 1208:71–75

    Article  CAS  Google Scholar 

  26. Guidance for industry bioanalytical method validation. Available at: http://www.fda.gov/downloads/Drugd/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf. Accessed 6 September 2010)

  27. Arys K, Van Bocxlaer J, Clauwaert K, Lambert W, Piette M, Van Peteghem C, De Leenheer A (2000) J Anal Toxicol 24:116–121

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 21590745) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Saito.

Additional information

Published in the special issue Forensic Toxicology with Guest Editors Frank T. Peters, Hans H. Maurer, and Frank Musshoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Fukushima, T., Yui, Y. et al. Monolithic spin column extraction and GC-MS for the simultaneous assay of diquat, paraquat, and fenitrothion in human serum and urine. Anal Bioanal Chem 400, 25–31 (2011). https://doi.org/10.1007/s00216-010-4633-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4633-4

Keywords

Navigation