Skip to main content

Advertisement

Log in

Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive, selective, and comprehensive method for the quantitative determination of tryptophan and 18 of its key metabolites in serum, urine, and cell culture supernatants was developed. The analytes were separated on a C18 silica column by reversed-phase liquid chromatography and detected by electrospray ionization tandem mass spectrometry in positive ion multiple reaction monitoring (MRM) mode, except for indoxyl sulfate which was measured in negative ion MRM mode in a separate run. The limits of detection and lower limits of quantification were in the range of 0.1–50 and 0.5–100 nM, respectively. Fully 13C isotope-labeled and deuterated internal standards were used to achieve accurate quantification. The applicability of the method to analyze serum, urine, and cell culture supernatants was demonstrated by recovery experiments and the evaluation of matrix effects. Precision for the analysis of serum, urine, and cell culture supernatants ranged between 1.3% and 16.0%, 1.5% and 13.5%, and 1.0% and 17.4%, respectively. The method was applied to analyze changes in tryptophan metabolism in cell culture supernatants from IFN-γ-treated monocytes and immature or mature dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keszthelyi D, Troost FJ, Masclee AAM (2009) Neurogastroenterol Motil 21:1239–1249

    Article  CAS  Google Scholar 

  2. Niwa T (2010) Nagoya J Med Sci 72:1–11

    CAS  Google Scholar 

  3. Smith EA, Macfarlane GT (1997) Microb Ecol 33:180–188

    Article  CAS  Google Scholar 

  4. Bridges JW, Evans ME, Idle JR, Millburn P, Osiyemi FO, Smith RL, Williams RT (1974) Xenobiotica 4:645–652

    CAS  Google Scholar 

  5. Lesurtel M, Soll C, Graf R, Clavien PA (2008) Cell Mol Life Sci 65:940–952

    Article  CAS  Google Scholar 

  6. Peters JC (1991) Adv Exp Med Biol 294:345–358

    CAS  Google Scholar 

  7. Suzuki Y, Suda T, Furuhashi K, Suzuki M, Fujie M, Hahimoto D, Nakamura Y, Inui N, Nakamura H, Chida K (2010) Lung Cancer 67:361–365

    Article  Google Scholar 

  8. Huttunen R, Syrjanen J, Aittoniemi J, Oja SS, Raitala A, Laine J, Pertovaara M, Vuento R, Huhtala H, Hurme M (2010) Shock 33:149–154

    Article  CAS  Google Scholar 

  9. Lee SM, Lee YS, Choi JH, Park SG, Choi IW, Joo YD, Lee WS, Lee JN, Choi I, Seo SK (2010) Immunol Lett 132:53–60

    Article  CAS  Google Scholar 

  10. Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Adv Med Sci 55:204–211

    Article  CAS  Google Scholar 

  11. De Ravin SS, Zarember KA, Long-Priel D, Chan KC, Fox SD, Gallin JI, Kuhns DB, Malech HL (2010) Blood 116:1755–1760

    Article  Google Scholar 

  12. Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H (2010) J Immunol 185:5953–5961

    Article  CAS  Google Scholar 

  13. Cao J, Murch SJ, O'Brien R, Saxena PK (2006) J Chromatogr A 1134:333–337

    Article  CAS  Google Scholar 

  14. Gregersen K, Frøyland L, Berstad A, Araujo P (2008) Talanta 75:466–472

    Article  CAS  Google Scholar 

  15. Monaghan PJ, Brown HA, Houghton LA, Keevil BG (2009) J Chromatogr B 877:2163–2167

    Article  CAS  Google Scholar 

  16. Miller AG, Brown H, Degg T, Allen K, Keevil BG (2010) J Chromatogr B 878:695–699

    Article  CAS  Google Scholar 

  17. de Jong WHA, Graham KS, de Vries EGE, Kema IP (2008) J Chromatogr B 868:28–33

    Article  Google Scholar 

  18. Matsuda F, Miyazawa H, Wakasa K, Miyagawa H (2005) Biosci Biotechnol Biochem 69:778–783

    Article  CAS  Google Scholar 

  19. Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gomez-Cadenas A (2005) J Agric Food Chem 53:8437–8442

    Article  CAS  Google Scholar 

  20. Hou S, Zhu J, Ding M, Lv G (2008) Talanta 76:798–802

    Article  CAS  Google Scholar 

  21. Wang G, Korfmacher WA (2009) Rapid Commun Mass Spectrom 23:2061–2069

    Article  CAS  Google Scholar 

  22. Amirkhani A, Heldin E, Markides KE, Bergquist J (2002) J Chromatogr B 780:381–387

    Article  CAS  Google Scholar 

  23. Yamada K, Miyazaki T, Shibata T, Hara N, Tsuchiya M (2008) J Chromatogr B 867:57–61

    Article  CAS  Google Scholar 

  24. de Jong WHA, Smit R, Bakker SJL, de Vries EGE, Kema IP (2009) J Chromatogr B 877:603–609

    Article  Google Scholar 

  25. Midttun Ø, Hustad S, Ueland PM (2009) Rapid Commun Mass Spectrom 23:1371–1379

    Article  CAS  Google Scholar 

  26. Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Anal Biochem 336:164–171

    Article  CAS  Google Scholar 

  27. F.A.D.A. U.S. (2001) Guidance for industry: bioanalytical method validation. Department of Health and Human Services, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM)

  28. Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, Engler H, Löhr GW (1990) Cancer Res 50:7450–7456

    CAS  Google Scholar 

  29. Stevenson HC, Miller P, Akiyama Y, Favilla T, Beman JA, Herberman R, Stull H, Thurman G, Maluish A, Oldham R (1983) J Immunol Methods 62:353–363

    Article  CAS  Google Scholar 

  30. Grohmann U, Fallarno F, Puccetti P (2003) Trends Immunol 24:242–248

    Article  CAS  Google Scholar 

  31. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Biochim Biophys Acta 1012:140–147

    Article  CAS  Google Scholar 

  32. Munn DH, Mellor AL (2007) J Clin Invest 117:1147–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded in part by BayGene, the intramural ReForM program of the Faculty of Medicine at the University of Regensburg, and the DFG (KFO 262, DE 835/2-1). We kindly thank Dr. Sanford Markey (Laboratory of Neurotoxicology, National Institutes of Health, Bethesda, MD, USA) for supplying 2H3-QA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Oefner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Stevens, A.P., Dettmer, K. et al. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 401, 3249–3261 (2011). https://doi.org/10.1007/s00216-011-5436-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5436-y

Keywords

Navigation