Skip to main content
Log in

Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The preparation and characteristics of a disposable amperometric magnetoimmunosensor, based on the use of functionalized magnetic beads (MBs) and gold screen-printed electrodes (Au/SPEs), for the specific detection and quantification of Staphylococcal protein A (ProtA) and Staphylococcus aureus (S. aureus) is reported. An antiProtA antibody was immobilized onto ProtA-modified MBs, and a competitive immunoassay involving ProtA antigen labelled with HRP was performed. The resulting modified MBs were captured by a magnetic field on the surface of tetrathiafulvalene-modified Au/SPEs and the amperometric response obtained at −0.15 V vs the silver pseudo-reference electrode of the Au/SPEs after the addition of H2O2 was used as transduction signal. The developed methodology showed very low limits of detection (1 cfu S. aureus/mL of raw milk samples), and a good selectivity against the most commonly involved foodborne pathogens originating from milk. These features, together with a short analysis time (2 h), the simplicity, and easy automation and miniaturization of the required instrumentation make the developed methodology a promising alternative in the development of devices for on-site analysis.

Schematic display of the developed S. aureus amperometric magnetoimmunosensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang SJ, Wang YJ, Cai QY, Fang JD (2010) Chin J Anal Chem 38:105–108

    Article  Google Scholar 

  2. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) N Engl J Med 352:1436–1444

    Article  CAS  Google Scholar 

  3. Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, Anderson KL, Dunman PM, Joyce S, Skaar EP (2007) Cell Host Microbe 1:109–119

    Article  CAS  Google Scholar 

  4. Huang S, Ge S, He L, Cai Q, Grimes CA (2008) Biosens Bioelectron 23:1745–1748

    Article  CAS  Google Scholar 

  5. Nelles MJ, Niswander CA, Karakawa WW, Vann WF, Arbeit RD (1985) Infect Immun 49:14–18

    CAS  Google Scholar 

  6. Huang SH (2007) Sens Actuators B 127:335–340

    Article  Google Scholar 

  7. Boujday S, Briandet R, Salmain M, Herry JM, Marnet PG, Gautier M, Pradier CM (2008) Microchim Acta 163:203–209

    Article  CAS  Google Scholar 

  8. McKillip JL, Drake M (2004) J Food Prot 67:823–832

    CAS  Google Scholar 

  9. Brett MM (1998) J Appl Microbiol Symp Suppl 84:110S–119S

    Google Scholar 

  10. Hughes D, Dailianis A, Hill L (1999) J AOAC Int 82:1171–1174

    CAS  Google Scholar 

  11. Bennett RW (2005) J Food Prot 68:1264–1270

    CAS  Google Scholar 

  12. Delibato E, Bancone M, Volpe G, De Medici D, Moscone D, Palleschi G (2005) Anal Lett 38:1569–1586

    Article  CAS  Google Scholar 

  13. Lancette GA, Tatini SR (1990) In: Vanderzant C, Splittstoesser DF (eds) Compendium of methods for the microbiological examination of foods, 3rd edn. American Public Health Association, Washington DC

    Google Scholar 

  14. Bennett RW, Lancette GA (1992) Bacteriological analytical manual, 7th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  15. Forsgren A (1970) Infect Immun 2:672–673

    CAS  Google Scholar 

  16. Movitz J (1976) Eur J Biochem 68:291–299

    Article  CAS  Google Scholar 

  17. Duggleby CJ, Jones SA (1983) Nucleic Acid Res 11:3065–3076

    Article  CAS  Google Scholar 

  18. Mirhabibollahi B, Brooks JL, Kroll RG (1990) Lett Appl Microbiol 11:119–122

    Article  CAS  Google Scholar 

  19. Mirhabibollahi B, Brooks JL, Kroll RG (1990) J Appl Bacteriol 68:577–585

    Article  CAS  Google Scholar 

  20. Mirhabibollahi B, Brooks JL, Kroll RG (1990) Appl Microbiol Biotechnol 34:242–247

    Article  CAS  Google Scholar 

  21. Rishpon J, Ivnitski D (1997) Biosens Bioelectron 12:195–204

    Article  CAS  Google Scholar 

  22. Valat C, Limoges B, Huet D, Romette JL (2000) Anal Chim Acta 404:187–194

    Article  CAS  Google Scholar 

  23. Lee W, Oh BK, Bae YM, Paek SH, Lee WH, Choi JW (2003) Biosens Bioelectron 19:185–192

    Article  CAS  Google Scholar 

  24. Zacco E, Pividori MI, Llopis X, Del Valle M, Alegret S (2004) J Immunol Methods 286:35–46

    Article  CAS  Google Scholar 

  25. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2007) Electroanalysis 19:1476–1482

    Article  Google Scholar 

  26. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Anal Bioanal Chem 391:837–845

    Article  Google Scholar 

  27. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Talanta 77:876–881

    Article  Google Scholar 

  28. Le D, He F, Jiang TJ, Nie L, Yao S (1995) J Microbiol Methods 23:229–234

    Article  Google Scholar 

  29. Lin CC, Chen LC, Juang CH, Ding SJ, Chang CC, Chang HC (2008) J Electroanal Chem 619–620:39–45

    Google Scholar 

  30. Le Loir Y, Baron F, Gautier M (2003) Genet Mol Res 2:63–76

    Google Scholar 

  31. Moragas-Encuentra M, Pablo-Busto MB (2008) Recopilación de normas microbiológicas de los alimentos y asimilados y otros parámetros físico-químicos de interés sanitario. http://www.eurocarne.com/informes/pdf/normas-microbiologicas.pdf. Accessed 14 Oct 11

  32. Dziadkowiec D, Mansfield LP, Forsythe SJ (1995) Lett Appl Microbiol 20:361–364

    Article  CAS  Google Scholar 

  33. Van der Wolf JM, Hyman LJ, Jones DA, Grevesse C, van Beckhoven JR, van Vuurde JW, Perombelon MC (1996) J Appl Bacteriol 80:487–495

    Article  Google Scholar 

  34. Grant IR, Ball HJ, Rowe MT (1998) Appl Environ Microbiol 64:3153–3158

    CAS  Google Scholar 

  35. Chen L, Deng L, Liu L, Peng Z (2007) Biosens Bioelectron 22:1487–1492

    Article  CAS  Google Scholar 

  36. Pedrero M, Campuzano S, Pingarrón JM (2012) Electroanal. doi:10.1002/elan.201100528, in press

  37. Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884–1886

    Article  CAS  Google Scholar 

  38. Bange A, Halsall HB, Heineman WR (2005) Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  39. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  40. Marquette CA, Blum LJ (2006) Biosens Bioelectron 2:1424–1433

    Article  Google Scholar 

  41. Willner I, Baron R, Willner B (2007) Biosens Bioelectron 22:1841–1852

    Article  CAS  Google Scholar 

  42. Zhang H, Cheng X, Richter M, Greene MI (2006) Nat Med 12:473–477

    Article  CAS  Google Scholar 

  43. Campuzano S, Esteban-Fernández de Ávila B, Yuste J, Pedrero M, García JL, García P, García E, Pingarrón JM (2010) Biosens Bioelectron 26:1225–1230

    Article  CAS  Google Scholar 

  44. Centi S, Laschi S, Mascini M (2007) Talanta 73:394–399

    Article  CAS  Google Scholar 

  45. Directive 2000/54/EC Protection of workers from risks related to exposure to biological agents at work. Off J European Comm L 262/21–45

  46. Campuzano S, Pedrero M, Pingarrón JM (2005) Talanta 66:1310–1319

    Article  CAS  Google Scholar 

  47. Loaiza ÓA, Campuzano S, Pedrero M, Pividori MI, García P, Pingarrón JM (2008) Anal Chem 80:8239–8245

    Article  CAS  Google Scholar 

  48. Spika JS, Verbrugh HA, Verhoef J (1981) Infect Immun 34:455–460

    CAS  Google Scholar 

  49. Brisabois A, Lafarge V, Brouillaud A, de Buyser ML, Collette C, Garin-Bastuji B, Thorel MF (1997) Rev Sci Tech 16:452–471

    CAS  Google Scholar 

  50. Fotou K, Tzora A, Voidarou Ch, Alexopoulos A, Plessas S, Avgeris I, Bezirtzoglou E, Akrida-Demertzi K, Demertzis PG (2011) Anaerobe 17:315–319

    Article  CAS  Google Scholar 

  51. Gebicka L, Gebicki JL (1997) J Enzym Inhib 12:133–141

    Article  CAS  Google Scholar 

  52. Abdel-Hamid I, Ghindilis AL, Atanasov P, Wilkins E (1997) Anal Lett 32:1081–1094

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Spanish Ministerio de Ciencia e Innovación Research Project CTQ2009-09351BQU, and the AVANSENS Program from the Comunidad de Madrid (S2009PPQ-1642) are gratefully acknowledged. B. Esteban-Fernández de Ávila acknowledges a FPI fellowship from the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Pingarrón.

Additional information

Published in the special issue Euroanalysis XVI (The European Conference on Analytical Chemistry) with guest editor Slavica Ražić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban-Fernández de Ávila, B., Pedrero, M., Campuzano, S. et al. Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus . Anal Bioanal Chem 403, 917–925 (2012). https://doi.org/10.1007/s00216-012-5738-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5738-8

Keywords

Navigation