Skip to main content
Log in

Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method utilizing chemical ionization gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocyanate in plasma. Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide and simultaneous extraction of the product into ethyl acetate facilitated by a phase-transfer catalyst, tetrabutylammonium sulfate. The limits of detection for cyanide and thiocyanate were 1 μM and 50 nM, respectively. The linear dynamic range was from 10 μM to 20 mM for cyanide and from 500 nM to 200 μM for thiocyanate with correlation coefficients higher than 0.999 for both cyanide and thiocyanate. The precision, as measured by %RSD, was below 9 %, and the accuracy was within 15 % of the nominal concentration for all quality control standards analyzed. The gross recoveries of cyanide and thiocyanate from plasma were over 90 %. Using this method, the toxicokinetic behavior of cyanide and thiocyanate in swine plasma was assessed following cyanide exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baskin SI, Petrikovics I, Kurche JS, Nicholson JD., Logue BA, Maliner BJ, Rockwood GA (2004) Insights on cyanide toxicity and methods of treatment. In: Flora SJS, Romano JA Jr, Baskin SI, Shekhar K (eds) Pharmacological perspectives of toxic chemicals and their antidotes. New Delhi, India: Narosa Publishing House

  2. Kage S, Nagata T, Kudo K (1996) Determination of cyanide and thiocyanate in blood by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr B Biomed Appl 675(1):27–32

    Article  CAS  Google Scholar 

  3. Logue BA, Hinkens DM, Baskin SI, Rockwood GA (2010) The analysis of cyanide and its breakdown products in biological samples. Crit Rev Anal Chem 40(2):122–147. doi:10.1080/10408340903535315

    Article  CAS  Google Scholar 

  4. Conn EE (1978) Cyanogenesis, the production of cyanide, by plants. In: Keeler RF, Van Kampen KR, James LF (eds) Effects of poisons in plants on livestock. Academic Press, San Diego, pp 301–310

    Google Scholar 

  5. Ballantyne B (1976) Changes in blood cyanide as a function of storage time and temperature. J Forensic Sci Soc 16(4):305–310

    Article  CAS  Google Scholar 

  6. Isom GE, Baskin SI (1997) Enzymes involved in cyanide metabolism. In: Sipes IG, McQueen CA, Gandolfi AJ (eds) Comprehensive toxicology. Elsevier Science, New York, NY

    Google Scholar 

  7. Sousa AB, Manzano H, Soto-Blanco B, Gorniak SL (2003) Toxicokinetics of cyanide in rats, pigs and goats after oral dosing with potassium cyanide. Arch Toxicol 77(6):330–334. doi:10.1007/s00204-003-0446-y

    CAS  Google Scholar 

  8. Wood JL, Cooley SL (1956) Detoxication of cyanide by cystine. J Biol Chem 218(1):449–457

    CAS  Google Scholar 

  9. Ansell M, Lewis FA (1970) A review of cyanide concentrations found in human organs. a survey of literature concerning cyanide metabolism, 'normal', non-fatal, and fatal body cyanide levels. J Forensic Med 17(4):148–155

    CAS  Google Scholar 

  10. Paul BD, Smith ML (2006) Cyanide and thiocyanate in human saliva by gas chromatography-mass spectrometry. J Anal Toxicol 30(8):511–515

    CAS  Google Scholar 

  11. Calafat AM, Stanfil SB (2002) Rapid quantitation of cyanide in whole blood by automated headspace gas chromatography. J Chromatogr B 772:131–137

    Article  CAS  Google Scholar 

  12. Dumas P, Gingras G, LeBlanc A (2005) Isotope dilution-mass spectrometry determination of blood cyanide by headspace gas chromatography. J Anal Toxicol 29(1):71–75

    CAS  Google Scholar 

  13. Felby S (2009) Determination of cyanide in blood by reaction head-space gas chromatography. Forensic Sci Med Pathol 5(1):39–43. doi:10.1007/s12024-008-9069-1

    Article  CAS  Google Scholar 

  14. Odoul M, Fouillet B, Nouri B, Chambon R, Chambon P (1994) Specific determination of cyanide in blood by headspace gas chromatography. J Anal Toxicol 18(4):205–207

    CAS  Google Scholar 

  15. Funazo K, Tanaka M, Shono T (1981) Determination of cyanide or thiocyanate at trace levels by derivatization and gas chromatography with flame thermionic detection. Anal Chem 53:1377–1380

    Article  CAS  Google Scholar 

  16. Funazo K, Kusano K, Wu HL, Tanaka M, Shono T (1982) Trace determination of cyanide by derivatization and flame thermionic gas chromatography. J Chromatogr 245:93–100

    Article  CAS  Google Scholar 

  17. Liu G, Liu J, Hara K, Wang Y, Yu Y, Gao L, Li L (2009) Rapid determination of cyanide in human plasma and urine by gas chromatography-mass spectrometry with two-step derivatization. J Chromatogr B Anal Technol Biomed Life Sci 877(27):3054–3058. doi:10.1016/j.jchromb.2009.07.029

    Article  CAS  Google Scholar 

  18. Thomson I, Anderson RA (1980) Determination of cyanide and thiocyanate in biological fluids by gas chromatography-mass spectrometry. J Chromatogr 188(2):357–362

    Article  CAS  Google Scholar 

  19. Segal HS (1962) The microdiffusion separation and determination of microgram quantities of thiocyanate in corn. J Agric Food Chem 10:10–12. doi:10.1021/jf60119a004

    Article  CAS  Google Scholar 

  20. Youso SL, Rockwood GA, Lee JP, Logue BA (2010) Determination of cyanide exposure by gas chromatography-mass spectrometry analysis of cyanide-exposed plasma proteins. Anal Chim Acta 677(1):24–28. doi:10.1016/j.aca.2010.01.028

    Article  CAS  Google Scholar 

  21. Maseda C, Matsubara K, Shiono H (1989) Improved gas chromatography with electron-capture detection using a reaction pre-column for the determination of blood cyanide: a higher content in the left ventricle of fire victims. J Chromatogr 490(2):319–327

    CAS  Google Scholar 

  22. Chen SH, Wu SM, Kou HS, Wu HL (1994) Electron-capture gas chromatographic determination of cyanide, iodide, nitrite, sulfide, and thiocyanate anions by phase-transfer-catalyzed derivatization with pentafluorobenzyl bromide. J Anal Toxicol 18(2):81–85

    Google Scholar 

  23. de Brabander HF, Verbeke R (1977) Determination of thiocyanate in tissues and body fluids of animals by gas chromatography with electron-capture detection. J Chromatogr 138(1):131–142

    Article  Google Scholar 

  24. Takekawa K, Oya M, Kido A, Suzuki O (1998) Analysis of cyanide in blood by headspace solid-phase microextraction (SPME) and capillary gas chromatography. Chromatographia 47(209–214)

    Google Scholar 

  25. Zamecnik J, Tam J (1987) Cyanide in blood by gas chromatography with NP detector and acetonitrile as internal standard. Application on air accident fire victims. J Anal Toxicol 11(1):47–48

    CAS  Google Scholar 

  26. Boadas-Vaello P, Jover E, Llorens J, Bayona JM (2008) Determination of cyanide and volatile alkylnitriles in whole blood by headspace solid-phase microextraction and gas chromatography with nitrogen phosphorus detection. J Chromatogr B Anal Technol Biomed Life Sci 870(1):17–21. doi:10.1016/j.jchromb.2008.05.031

    Article  CAS  Google Scholar 

  27. Frison G, Zancanaro F, Favretto D, Ferrara SD (2006) An improved method for cyanide determination in blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20(19):2932–2938. doi:10.1002/rcm.2689

    Article  CAS  Google Scholar 

  28. Food and Drug Administration (2001) Guidance for industry bioanalytical method validation. US Department of Health and Human Services, FDA, Rockville, MD

    Google Scholar 

  29. Foley JP, Dorsey JG (1984) A review of the exponentially modified Gaussian (EMG) function: evaluation and subsequent calculation of universal data. J Chromatogr Sci 22:40–46

    CAS  Google Scholar 

  30. Levine MS, Radford EP (1978) Occupational exposures to cyanide in Baltimore fire fighters. J Occup Med 20(1):53–56

    Article  CAS  Google Scholar 

  31. Dalferes ER Jr, Webber LS, Radhakrishnamurthy B, Berenson GS (1980) Continuous-flow (autoanalyzer I) analysis for plasma thiocyanate as an index to tobacco smoking. Clin Chem 26(3):493–495

    CAS  Google Scholar 

  32. Connolly D, Barron L, Paull B (2002) Determination of urinary thiocyanate and nitrate using fast ion-interaction chromatography. J Chromatogr B Anal Technol Biomed Life Sci 767(1):175–180

    Article  CAS  Google Scholar 

  33. Pettigrew AR, Fell GS (1973) Microdiffusion method for estimation of cyanide in whole blood and its application to the study of conversion of cyanide to thiocyanate. Clin Chem 19(5):466–471

    CAS  Google Scholar 

  34. Hasuike Y, Nakanishi T, Moriguchi R, Otaki Y, Nanami M, Hama Y, Naka M, Miyagawa K, Izumi M, Takamitsu Y (2004) Accumulation of cyanide and thiocyanate in haemodialysis patients. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association 19(6):1474–1479. doi:10.1093/ndt/gfh076

    Article  CAS  Google Scholar 

  35. Glatz Z, Novakova S, Sterbova H (2001) Analysis of thiocyanate in biological fluids by capillary zone electrophoresis. J chromatogr A 916(1–2):273–277

    CAS  Google Scholar 

  36. Logue BA, Kirschten NP, Petrikovics I, Moser MA, Rockwood GA, Baskin SI (2005) Determination of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine and plasma by gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 819(2):237–244. doi:10.1016/j.jchromb.2005.01.045

    Article  CAS  Google Scholar 

  37. Panchal JG, Patel RV, Menon SK (2011) Development and validation of GC/MS method for determination of pramipexole in rat plasma. Biomed Chromatogr 25:524–530

    Article  CAS  Google Scholar 

  38. Gerace E, Salomone A, Fasano F, Costa R, Boschi D, Di Stilo A, Vincenti M (2011) Validation of a GC/MS method for the detection of two quinolinone-derived selective androgen receptor modulators in doping control analysis. Anal Bioanal Chem 400(1):137–144. doi:10.1007/s00216-010-4569-8

    Article  CAS  Google Scholar 

  39. Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P (2008) Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese. J Mol Microbiol Biotechnol 15(2–3):199–211. doi:10.1159/000121331

    Article  CAS  Google Scholar 

  40. Lundquist P, Rosling H, Sorbo B (1985) Determination of cyanide in whole blood, erythrocytes, and plasma. Clin Chem 31(4):591–595

    CAS  Google Scholar 

  41. Seto Y (2002) False cyanide detection. Anal Chem 74(5):134A–141A

    Article  CAS  Google Scholar 

  42. Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol 45(6):1802–1807

    CAS  Google Scholar 

  43. Knowles CJ (1976) Microorganisms and cyanide. Bacteriol Rev 40(3):652–680

    CAS  Google Scholar 

  44. Seto Y (1995) Oxidative conversion of thiocyanate to cyanide by oxyhemoglobin during acid denaturation. Arch Biochem Biophys 321(1):245–254. doi:10.1006/abbi.1995.1392

    Article  CAS  Google Scholar 

  45. Seto Y (1996) Determination of physiological levels of blood cyanide without interference by thiocyanate. Jpn J Toxicol Environ Health 42:319–325

    Article  CAS  Google Scholar 

  46. Seto Y, Tsunoda N, Ohta H, Shinohara T (1993) Determination of blood cyanide by headspace gas chromatography with nitrogen-phosphorus detection and using a megabore capillary column. Anal Chim Acta 276:247–259

    Article  CAS  Google Scholar 

  47. Vessey CJ, Wilson J (1978) Red cell cyanide. J Pharm Pharmacol 30:20–26

    Article  Google Scholar 

  48. Pollay M, Stevens A, Davis C Jr (1966) Determination of plasma-thiocyanate binding and the Donnan ratio under simulated physiological conditions. Anal Biochem 17(2):192–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the CounterACT Program, National Institutes of Health Office of the Director, and the National Institute of Allergy and Infectious Diseases, Inter Agency Agreement Number Y1-OD-0690-01/A-120-B.P2010-01, Y1-OD-1561-01/A120-B.P2011-01, and the USAMRICD under the auspices of the US Army Research Office of Scientific Services Program Contract No. W911NF-11-D-0001 administered by Battelle (delivery order 0079, contract no TCN 11077). We gratefully acknowledge the funding from the Oak Ridge Institute for Science and Education (ORISE). The authors would also like to acknowledge Dr. George Perry, Associate Professor, Animal and Range Science of South Dakota State University, for making arrangements to provide swine plasma. The authors are thankful to Susan M. Boudreau, RN, BSN, Maria G. Castaneda, MS, Toni E. Vargas, PA-C, MHS, and Patricia Dixon, MHS, from the Clinical Research Division, Wilford Medical Center, Lackland A F B, TX, for providing cyanide exposed swine plasma samples for these studies. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army, the National Institutes of Health, or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Logue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandari, R.K., Oda, R.P., Youso, S.L. et al. Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS). Anal Bioanal Chem 404, 2287–2294 (2012). https://doi.org/10.1007/s00216-012-6360-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6360-5

Keywords

Navigation