Skip to main content
Log in

Characterization of the biotransformation pathways of clomiphene, tamoxifen and toremifene as assessed by LC-MS/(MS) following in vitro and excretion studies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldstein SR, Siddhanti S, Ciaccia AV, Plouffe L (2000) Hum Reprod Update 6:212–224

    Article  CAS  Google Scholar 

  2. Kangas L (1990) J Steroid Biochem 36:191–195

    Article  CAS  Google Scholar 

  3. Lien EA, Lønning PE (2000) Cancer Treat Rev 26:205–227

    Article  CAS  Google Scholar 

  4. Morello KC, Wurz GT, DeGregorio MW (2002) Crit Rev in Oncol/Hematol 43:63–76

    Article  Google Scholar 

  5. Sotaniemi EA, Anttila MI (1997) Cancer Chemother Pharmacol 40:185–188

    Article  CAS  Google Scholar 

  6. Tomàs E, Kauppila A, Blanco G, Apaja-Sarkkinen M, Laatikainen T (1995) Gynecol Oncol 59:261–266

    Article  Google Scholar 

  7. Valavaara R, Pyrhönen S, Heikkinen M, Rissanen P, Blanco G, Thölix E, Nordman E, Taskinen P, Holsti L, Hajba A (1988) Eur J Cancer Clin Oncol 24:785–790

    Article  CAS  Google Scholar 

  8. Johnson MD, Zuo H, Lee K-H, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Breast Cancer Res. Treat 85:151–159

    CAS  Google Scholar 

  9. Handelsman DJ (2006) Clinical Rev: J Clin Endocrinol Metab 91:1646–1653

    Article  CAS  Google Scholar 

  10. Handelsman DJ (2008) Br J Pharmacol 154:598–605

    Article  CAS  Google Scholar 

  11. WADA (2013) The World Antidoping Code. The 2013 Prohibited List International Standard. In: World Antidoping Agency, Montreal (Canada). http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/2013/WADA-Prohibited-List-2013-EN.pdf. Accessed Jan 2013

  12. Mareck-Engelke U, Sigmund G, Opfermann GH, Schänzer W (2001) Screening for tamoxifen, clomiphene and cyclofenil in doping analysis (9). In: Schänzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis. Sport und Buch Strauss, Köln, pp 53–61

    Google Scholar 

  13. Crewe HK, Ghobadi C, Gregory A, Rostami-Hodjegan A, Lennard MS (2007) J Chromatogr B 847:296–299

    Article  CAS  Google Scholar 

  14. Vittoriano B, de la Torre X (2007) Study of clomiphene metabolism by LC/MS/MS (15). In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advanced in doping analysis. Sportverlag Strauss, Köln, pp 113–122

    Google Scholar 

  15. Oueslatio F, Maatki M, Osman Z (2008) Identification by LC-ESI-MS/MS of new clomiphene metabolites in urine1 (6). In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advanced in doping analysis. Sportverlag Strauss, Köln, pp 333–336

    Google Scholar 

  16. Mazzarino M, Fiacco I, de la Torre X, Botrè F (2008) Eur J Mass Spectrom 14:171–180

    Article  CAS  Google Scholar 

  17. Ganchev B, Heinkele G, Kerb R, Schwab M, Mürdter T (2011) Anal Bioanal Chem 400:3429–3441

    Article  CAS  Google Scholar 

  18. Lu J, He G, Wang X, Xu Y, Wu Y, Dong Y, He Z, Liu X, Bo T, Ouyang G (2012) J Chromatogr A 1243:23–32

    Article  CAS  Google Scholar 

  19. Jordan VC, Collins MM, Rowsby L, Prestwich G (1977) J Endocrinol 75:305–316

    Article  CAS  Google Scholar 

  20. Adam HK, Douglas EJ, Kemp JV (1979) Biochem Pharmacol 28:145–147

    Article  CAS  Google Scholar 

  21. Kemp JV, Adam HK, Wakeling AE, Slater R (1983) Biochem Pharmacol 32:2045–2052

    Article  CAS  Google Scholar 

  22. Jordan VC (1982) Breast Cancer Res Treat 2:123–138

    Article  CAS  Google Scholar 

  23. Bain RR, Jordan VC (1983) Biochem Pharmacol 32:373–375

    Article  CAS  Google Scholar 

  24. Lien EA, Solheim E, Lea OA, Lundgren S, Kvinnsland S, Ueland PM (1989) Cancer Res 49:2175–2183

    CAS  Google Scholar 

  25. Poon GK, Chui YC, McCague R, LÅnning PE, Feng R, Rowlands MG, Jarman M (1993) Drug Metab Dispos 21:1119–1124

    CAS  Google Scholar 

  26. Jones RM, Yuan ZX, Lamb JH, Lim CK (1996) J Chromatogr A 722:249–255

    Article  CAS  Google Scholar 

  27. Crewe HK, Ellis SW, Lennard MS, Tucker GT (1997) Biochem Pharmacol 53:171–178

    Article  CAS  Google Scholar 

  28. Fan PW, Zhang F, Bolton JL (1999) Chem Res Toxicol 13:45–52

    Article  Google Scholar 

  29. Li X-F, Carter S, Dovichi NJ, Zhao JY, Kovarik P, Sakuma T (2001) J Chromatogr A 914:5–12

    Article  CAS  Google Scholar 

  30. Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EMJ (2002) Drug Metab Dispos 30:869–874

    Article  CAS  Google Scholar 

  31. Lee KH, Ward BA, Desta Z, Flockhart DA, Jones DR (2003) J Chromatogr B: Analyt Technol Biomed Life Sci 791:245–253

    Article  CAS  Google Scholar 

  32. White I (2003) Curr Drug Metab 4:223–239

    Article  CAS  Google Scholar 

  33. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) J Pharmacy Exp Therap 310:1062–1075

    Article  CAS  Google Scholar 

  34. Jordan VC (2007) Steroids 72:829–842

    Article  CAS  Google Scholar 

  35. Bérengère C, Morin P, Bayoudh S, de Ceaurriz J (2008) J Chromatogr A 1196–1197:81–88

    Google Scholar 

  36. Mazzarino M, de la Torre X, Di Santo R, Fiacco I, Rosi F, Botrè F (2010) Rapid Commun Mass Spectrom 24:749–760

    Article  CAS  Google Scholar 

  37. Watanabe N, Irie T, Koyama M, Tominaga T (1989) J Chromatogr B: Biomed Sci Appl 497:169–180

    Article  CAS  Google Scholar 

  38. Wiebe V, Benz C, Shemano I, Cadman T, DeGregorio M (1990) Cancer Chemother Pharmacol 25:247–251

    Article  CAS  Google Scholar 

  39. Anttila M, Valavaara R, Kivinen S, Mäenpää J (1990) J Steroid Biochem 36:249–252

    Article  CAS  Google Scholar 

  40. Webster LK, Crinis NA, Stokes KH, Bishop JF (1991) J Chromatogr B: Biomed Sci Appl 565:482–487

    Article  CAS  Google Scholar 

  41. Berthou F, Dreano Y, Belloc C, Kangas L, Gautier J-C, Beaune P (1994) Biochem Pharmacol 47:1883–1895

    Article  CAS  Google Scholar 

  42. Anttila M, Laakso S, Nyländen P, Sotaniemi EA (1995) Clin Pharmacol Therap 57:625–635

    Article  Google Scholar 

  43. Martinsen A, Gynther J (1996) J Chromatogr A 724:358–363

    Article  CAS  Google Scholar 

  44. Taras TL, Wurz GT, Linares GR, DeGregorio MW (2000) Clin Pharmacokinet 39:327–334

    Article  CAS  Google Scholar 

  45. Jones RM, Lim CK (2002) Biomed Chomatogr 16:361–363

    Article  CAS  Google Scholar 

  46. Dowers TS, Qin Z-H, Thatcher GRJ, Bolton JL (2006) Chem Res Toxicol 19:1125–1137

    Article  CAS  Google Scholar 

  47. Lohmann W, Karst U (2009) Anal Bioanal Chem 394:1341–1348

    Article  CAS  Google Scholar 

  48. Lu J, Wang X, Xu Y, Dong Y, Yang S, Wu Y, Qin Y, Wu M (2011) Analyst 136:467–472

    Article  CAS  Google Scholar 

  49. Gòmez C, Pozo OJ, Diaz R, Sancho JV, Vilaroca E, Salvador JP, Marco MP, Hernandez F, Segura J, Ventura R (2011) J Chromatogr A 1218:4727–4737

    Article  Google Scholar 

  50. Mazzarino M, de la Torre X, Botrè F (2011) A Anal Bioanal Chem 401:529–541

    Article  CAS  Google Scholar 

  51. Gennari L, Merlotti D, Stolakis K, Nuti R (2012) Expert Opin Drug Metab Toxicol 8:505–513

    Article  CAS  Google Scholar 

  52. Shen L, Ahmad S, Park S, DeMaio W, Oganesian A, Hultin T, Scatina J, Bungay P, Chandrasekaran A (2010) Drug Metab Dispos 38:1471–1479

    Article  CAS  Google Scholar 

  53. Ruenitz PC, Bagley JR, Mokler CM (1982) J Med Chem 25:1056–1060

    Article  CAS  Google Scholar 

  54. Jordan VC, Gosden B (1982) Mol Cell Endocrinol 27:291–306

    Article  CAS  Google Scholar 

  55. Allen KE, Clark ER, Jordan VC (1980) Br J Pharmacol 71:83–91.

    Google Scholar 

  56. Kangas L (1990) Cancer Chemother Pharmacol 27:8–12

    Article  CAS  Google Scholar 

  57. Kim J, Coss CC, Barrett CM, Mohler ML, Bohl CE, Li C-M, He Y, Veverka KA, Dalton JT (2012) Int J Cancer. doi:10.1002/ijc.27794

    Google Scholar 

  58. Hill JR (2001) In vitro drug metabolism using liver microsomes. In: Current protocols in pharmacology. Wiley, New York

  59. Asha S, Vidyavathi M (2010) Appl Biochem Biotechnol 160:1699–1722

    Article  CAS  Google Scholar 

  60. Botrè F (2003) Toxicol Vitr 17:509–513

    Article  Google Scholar 

  61. Lee J, Xiaodong L (2007) Curr Drug Metab 8:822–829

    Article  Google Scholar 

Download references

Acknowledgments

This project has been supported by a research grant by the Partnership for Clean Competition, United States (Research Grant 2011–2012). The authors are also grateful to Ms. Amelia Palermo for her valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Botrè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzarino, M., Biava, M., de la Torre, X. et al. Characterization of the biotransformation pathways of clomiphene, tamoxifen and toremifene as assessed by LC-MS/(MS) following in vitro and excretion studies. Anal Bioanal Chem 405, 5467–5487 (2013). https://doi.org/10.1007/s00216-013-6961-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6961-7

Keywords

Navigation