Skip to main content
Log in

Towards imaging metabolic pathways in tissues

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging using 9-aminoacridine as the matrix leads to the detection of low mass metabolites and lipids directly from cancer tissues. These included lactate and pyruvate for studying the Warburg effect, as well as succinate and fumarate, metabolites whose accumulation is associated with specific syndromes. By using the pathway information present in the human metabolome database, it was possible to identify regions within tumor tissue samples with distinct metabolic signatures that were consistent with known tumor biology. We present a data analysis workflow for assessing metabolic pathways in their histopathological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/science.1160809

    Article  CAS  Google Scholar 

  3. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8(1):352–361. doi:10.1021/pr8006232

    Article  CAS  Google Scholar 

  4. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, Dietel M, Fiehn O (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66(22):10795–10804. doi:10.1158/0008-5472.CAN-06-0755

    Article  CAS  Google Scholar 

  5. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O (2008) Metabolite profiling of human colon carcinoma—deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72. doi:10.1186/1476-4598-7-72

    Article  Google Scholar 

  6. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9(16):3256–3276. doi:10.4161/cc.9.16.12553

    Article  CAS  Google Scholar 

  7. Tamulevicius P, Streffer C (1995) Metabolic imaging in tumours by means of bioluminescence. Br J Cancer 72:1102–1112

    Article  CAS  Google Scholar 

  8. Benabdellah F, Touboul D, Brunelle A, Laprévote O (2009) In situ primary metabolites localization on a rat brain section by chemical mass spectrometry imaging. Anal Chem 81:5557–5560

    Article  CAS  Google Scholar 

  9. Manier ML, Spraggins JM, Reyzer ML, Norris JL, Caprioli RM (2014) A derivatization and validation strategy for determining the spatial localization of endogenous amine metabolites in tissues using MALDI imaging mass spectrometry. J Mass Spectrom 49:665–673

    Article  CAS  Google Scholar 

  10. Pirman DA, Efuet E, Ding X-P, Pan Y, Tan L, Fischer SM, DuBois RN, Yang P (2013) Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLOS ONE e61379

  11. Miura D, Fujimura Y, Yamato M, Hyodo F, Utsumi H, Tachibana H, Wariishi H (2010) Ultrahighly sensitive in situ metabolomic imaging for visualizing spatiotemporal metabolic behaviors. Anal Chem 82:9789–9796

    Article  CAS  Google Scholar 

  12. Sugiura Y, Taguchi R, Setou M (2011) Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a Kainate-induced seizure. PLoS ONE 6:e17952

    Article  CAS  Google Scholar 

  13. Jones EA, Shyti R, van Zeijl RJM, van Heiningen SH, Ferrari MD, Deelder AM, Tolner EA, van den Maagdenberg AMJM, McDonnell LA (2012) Imaging mass spectrometry of biomolecular changes following unilateral cortical spreading depression. J Proteomics 75:5027–5035

    Article  CAS  Google Scholar 

  14. McDonnell LA, van Remoortere A, de Velde N, van Zeijl RJM, Deelder A (2010) Imaging mass spectrometry data reduction: automated feature identification and extraction. J Am Soc Mass Spectrom 21:1969–1978

    Article  CAS  Google Scholar 

  15. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  CAS  Google Scholar 

  16. Tomlinson IPM, Alam NA, Rowan AJ, Barclay E, Jaeger EEM, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S, Roylance RR, Olpin S, Bevan S, Barker K, Hearle N, Houlston RS, Kiuru M, Lehtonen R, Karhu A, Vilkki S, Laiho P, Eklund C, Vierimaa O, Aittomäki K, Hietala M, Sistonen P, Paetau A, Salovaara R, Herva R, Launonen V, Aaltonen LA (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Article  CAS  Google Scholar 

  17. Bayley JP, Kunst HPM, Cascon A, Sampietro ML, Gaal J, Korpershoek E, Hinojar-Gutierrez A, Timmers H, Hoefsloot LH, Hermsen MA, Suarez C, Hussain AK, Vriends A, Hes FJ, Jansen JC, Tops CM, Corssmit EP, de Knijff P, Lenders JWM, Cremers C, Devilee P, Dinjens WNM, de Krijger RR, Robledo M (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11(4):366–372. doi:10.1016/s1470-2045(10)70007-3

    Article  CAS  Google Scholar 

  18. Gauthier JW, Trautman TR, Jacobson DB (1991) Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal Chim Acta 246:211–225

    Article  CAS  Google Scholar 

  19. Maier SK, Hahne H, Gholami AM, Balluff B, Meding S, Schoene C, Walch AK, Kuster B (2013) Comprehensive identification of proteins from MALDI imaging. Mol Cell Proteomics. doi:10.1074/mcp.M113.027599

    Google Scholar 

  20. Hattori K, Kajimura M, Hishiki T, Nakanishi T, Kubo A, Nagahata Y, Ohmura M, Yachie-Kinoshita A, Matsuura T, Morikawa T, Nakamura T, Setou M, Suematsu M (2010) Paradoxical ATP elevation in ischemic penumbra revealed by quantitative imaging mass spectrometry. Antioxid Redox Signal 13(8):1157–1167. doi:10.1089/ars.2010.3290

    Article  CAS  Google Scholar 

  21. Sugiura Y, Honda K, Kajimura M, Suematsu M (2014) Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics 14:829–838

    Article  CAS  Google Scholar 

  22. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708

    Article  CAS  Google Scholar 

  23. Sze T, Chan T (1999) Time-of-flight effects in matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Rapid Commun Mass Spectrom 13:398–406

    Article  CAS  Google Scholar 

  24. Källback P, Shariatgorji M, Nilsson A, Andrén PE (2012) Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteomics 75:4941–4951

    Article  Google Scholar 

  25. Mashego MR, Wu L, van Dam JC, Ras C, Vinke JL, van Winden WA, van Gulik WM, Heijnen JJ (2005) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628

    Article  Google Scholar 

  26. Prensner JR, Chinnaiyan AM (2011) Metabolism unhinged: IDH mutations in cancer. Nat Med 17(3):291–293

    Article  CAS  Google Scholar 

  27. Navis AC, Niclou SP, Fack F, Stieber D, van Lith S, Verrijp K, Wright A, Stauber J, Tops B, Otte-Holler I, Wevers RA, van Rooij A, Pusch S, von Deimling A, Tigchelaar W, van Noorden CJ, Wesseling P, Leenders WP (2013) Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and α-KG. Acta Neuropathol Commun 1:18

    Article  Google Scholar 

  28. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662. doi:10.1038/sj.onc.1209607

    Article  CAS  Google Scholar 

  29. Pereira L, Soares P, Máximo V, Samuels DC (2012) Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 12:53

    Article  CAS  Google Scholar 

  30. Savagner F, Franc B, Guyetant S, Rodien P, Reynier P, Malthiery Y (2001) Defective mitochondrial ATP synthesis in oxyphilic thyroid tumors. J Clin Endocrinol Metab 86:4920–4925

    Article  CAS  Google Scholar 

  31. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305. doi:10.1136/bmj.38415.708634.F7

    Article  Google Scholar 

  32. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti JF, Bost F (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70(6):2465–2475. doi:10.1158/0008-5472.CAN-09-2782

    Article  CAS  Google Scholar 

  33. van der Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684. doi:10.1038/nrd3504

    Article  Google Scholar 

  34. Medina MA, Jones DJ, Stavinoha WB, Ross DH (1975) The levels of labile intermediary metabolites in mouse brain following rapid tissue fixation with microwave irradiation. J Neurochem 24(2):223–227

    Article  CAS  Google Scholar 

  35. Svensson M, Boren M, Skold K, Falth M, Sjogren B, Andersson M, Svenningsson P, Andren PE (2009) Heat stabilization of the tissue proteome: a new technology for improved proteomics. J Proteome Res 8(2):974–981. doi:10.1021/pr8006446

    Article  CAS  Google Scholar 

  36. Larman TC, DePalma SR, Hadjipanayis AG, The Cancer Genome Atlas Research Network, Protopopovd A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati R, Seidman JG (2012) Spectrum of somatic mitochondrial mutations in five cancers. PNAS 109:14087–14091

    Article  CAS  Google Scholar 

  37. Zhang G, Yang P, Guo P, Miele L, Sarkar FH, Wang Z, Zhou Q (2013) Unraveling the mystery of cancer metabolism in the genesis of tumor-initiating cells and development of cancer. BBA-Rev Cancer 1836(1):49–59

Download references

Acknowledgments

This work is financially supported by the ICT consortium COMMIT project “e-biobanking with Imaging” and the Cyttron II project “Imaging Mass Spectrometry.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam A. McDonnell.

Additional information

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Tim J.A. Dekker and Emrys A. Jones contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekker, T.J.A., Jones, E.A., Corver, W.E. et al. Towards imaging metabolic pathways in tissues. Anal Bioanal Chem 407, 2167–2176 (2015). https://doi.org/10.1007/s00216-014-8305-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8305-7

Keywords

Navigation