Skip to main content
Log in

Factors affecting separation and detection of bile acids by liquid chromatography coupled with mass spectrometry in negative mode

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bile acids (BAs) are cholesterol metabolites with important biological functions. They undergo extensive host-gut microbial co-metabolisms during the enterohepatic circulation, creating a vast structural diversity and resulting in great challenges to separate and detect them. Based on the bioanalytical reports in the past decade, this work developed three chromatographic gradient methods to separate a total of 48 BA standards on an ethylene-bridged hybrid (BEH) C18 column and high-strength silica (HSS) T3 column and accordingly unraveled the factors affecting the separation and detection of them by liquid chromatography coupled with mass spectrometry (LC-MS). It was shown that both the acidity and ammonium levels in mobile phases reduced the electrospray ionization (ESI) of BAs as anions of [M−H], especially for those unconjugated ones without 12-hydroxylation. It was also found that the retention of taurine conjugates on the BEH C18 column was sensitive to the strength of formic acid and ammonium in mobile phases. By using the volatile buffers with an equivalent ammonium level as mobile phases, we comprehensively demonstrated the effects of the elution pH value on the retention behaviors of BAs on both the BEH C18 column and HSS T3 column. Based on the retention data acquired on a C18 column, we presented the ionization constants (pK a) of various BAs with the widest coverage beyond those of previous reports. When we made attempts to establish the structure-retention relationships (SRRs) of BAs, the lack of discriminative structural descriptors for BA stereoisomers emerged as the bottleneck problem. The methods and results presented in this work are especially useful for the development of reliable, sensitive, high-throughput, and robust LC-MS bioanalytical protocols for the quantitative metabolomic studies.

Nonlinear curve fitting of capacity factors and elution pH value for the separation of common unconjugated bile acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74. doi:10.1146/annurev.biochem.72.121801.161712.

    Article  CAS  Google Scholar 

  2. Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 2013;58(1):155–68. doi:10.1016/j.jhep.2012.08.002.

    Article  CAS  Google Scholar 

  3. Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56(6):1085–99. doi:10.1194/jlr.R054114.

    Article  CAS  Google Scholar 

  4. Carey MC, Small DM. Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch Intern Med. 1972;130(4):506–27.

    Article  CAS  Google Scholar 

  5. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–58.

    Article  CAS  Google Scholar 

  6. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. doi:10.1038/nature04330.

    Article  CAS  Google Scholar 

  7. Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol. 2006;68:159–91. doi:10.1146/annurev.physiol.68.033104.152158.

    Article  CAS  Google Scholar 

  8. Zhou X, Cao L, Jiang C, Xie Y, Cheng X, Krausz KW, et al. PPARalpha-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat Commun. 2014;5:4573. doi:10.1038/ncomms5573.

    Article  CAS  Google Scholar 

  9. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–8. doi:10.1038/nature13828.

    Article  CAS  Google Scholar 

  10. Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 2017;25(4):856–867 e855. doi:10.1016/j.cmet.2017.03.007.

    Article  CAS  Google Scholar 

  11. Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res. 2010;51(2):226–46. doi:10.1194/jlr.R000042.

    Article  CAS  Google Scholar 

  12. Griffiths WJ, Sjovall J. Bile acids: analysis in biological fluids and tissues. J Lipid Res. 2010;51(1):23–41. doi:10.1194/jlr.R001941-JLR200.

    Article  Google Scholar 

  13. Lan K, Su M, Xie G, Ferslew BC, Brouwer KL, Rajani C, et al. Key role for the 12-hydroxy group in the negative ion fragmentation of unconjugated C24 bile acids. Anal Chem. 2016;88(14):7041–8. doi:10.1021/acs.analchem.6b00573.

    Article  CAS  Google Scholar 

  14. Li XJ, Yang K, Du G, Xu L, Lan K. Understanding the regioselective hydrolysis of ginkgolide B under physiological environment based on generation, detection, identification, and semi-quantification of the hydrolyzed products. Anal Bioanal Chem. 2015;407(26):7945–56. doi:10.1007/s00216-015-8963-0.

    Article  CAS  Google Scholar 

  15. Xie G, Wang Y, Wang X, Zhao A, Chen T, Ni Y, et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res. 2015;14(2):850–9. doi:10.1021/pr500920q.

    Article  CAS  Google Scholar 

  16. Babić S, Horvat AJ, Pavlović DM, Kaštelan-Macan M. Determination of pKa values of active pharmaceutical ingredients. Trac-Trends Anal Chem. 2007;26(11):1043–61.

    Article  Google Scholar 

  17. Roda A, Minutello A, Angellotti MA, Fini A. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res. 1990;31(8):1433–43.

    CAS  Google Scholar 

  18. Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30(5):719–30.

    CAS  Google Scholar 

  19. Want EJ, Coen M, Masson P, Keun HC, Pearce JT, Reily MD, et al. Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Anal Chem. 2010;82(12):5282–9. doi:10.1021/ac1007078.

    Article  CAS  Google Scholar 

  20. Mano N, Mori M, Ando M, Goto T, Goto J. Ionization of unconjugated, glycine- and taurine-conjugated bile acids by electrospray ionization mass spectrometry. J Pharm Biomed Anal. 2006;40(5):1231–4. doi:10.1016/j.jpba.2005.09.012.

    Article  CAS  Google Scholar 

  21. Janos P. Determination of equilibrium constants from chromatographic and electrophoretic measurements. J Chromatogr A. 2004;1037(1–2):15–28.

    Article  CAS  Google Scholar 

  22. Fini A, Roda A. Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids. J Lipid Res. 1987;28(7):755–9.

    CAS  Google Scholar 

  23. Roses M, Canals I, Allemann H, Siigur K, Bosch E. Retention of ionizable compounds on HPLC. 2. Effect of pH, ionic strength, and mobile phase composition on the retention of weak acids. Anal Chem. 1996;68(23):4094–100. doi:10.1021/ac960105d.

    Article  CAS  Google Scholar 

  24. Bosch E, Bou P, Allemann H, Roses M. Retention of ionizable compounds on HPLC. pH scale in methanol-water and the pK and pH values of buffers. Anal Chem. 1996;68(20):3651–7. doi:10.1021/Ac960104l.

    Article  CAS  Google Scholar 

  25. Bosch E, Espinosa S, Roses M. Retention of ionizable compounds on high-performance liquid chromatography—III. Variation of pK values of acids and pH values of buffers in acetonitrile-water mobile phases. J Chromatogr A. 1998;824(2):137–46. doi:10.1016/S0021-9673(98)00647-5.

    Article  CAS  Google Scholar 

  26. Barbosa J, Barron D, Buti S. Chromatographic behaviour of ionizable compounds in liquid chromatography. Part 1. pH scale, pK(a) and pH(s) values for standard buffers in tetrahydrofuran-water. Anal Chim Acta. 1999;389(1–3):31–42. doi:10.1016/S0003-2670(99)00133-6.

    Article  CAS  Google Scholar 

  27. Sarmini K, Kenndler E. Capillary zone electrophoresis in mixed aqueous-organic media: effect of organic solvents on actual ionic mobilities and acidity constants of substituted aromatic acids. IV. Acetonitrile. J Chromatogr A. 1999;833(2):245–59. doi:10.1016/S0021-9673(98)00984-4.

    Article  CAS  Google Scholar 

  28. Sarmini K, Kenndler E. Capillary zone electrophoresis in mixed aqueous-organic media: effect of organic solvents on actual ionic mobilities and acidity constants of substituted aromatic acids—III. 1-Propanol. J Chromatogr A. 1998;818(2):209–15. doi:10.1016/S0021-9673(98)00565-2.

    Article  CAS  Google Scholar 

  29. Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A. 2004;1037(1–2):299–310.

    Article  CAS  Google Scholar 

  30. Kaliszan R. QSRR: quantitative structure-(chromatographic) retention relationships. Chem Rev. 2007;107(7):3212–46. doi:10.1021/cr068412z.

    Article  CAS  Google Scholar 

  31. Sarbu C, Kuhajda K, Kevresan S. Evaluation of the lipophilicity of bile acids and their derivatives by thin-layer chromatography and principal component analysis. J Chromatogr A. 2001;917(1–2):361–6.

    Article  CAS  Google Scholar 

  32. Sarbu C, Onisor C, Posa M, Kevresan S, Kuhajda K. Modeling and prediction (correction) of partition coefficients of bile acids and their derivatives by multivariate regression methods. Talanta. 2008;75(3):651–7. doi:10.1016/j.talanta.2007.11.061.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Dr. Takashi Iida (Nihon University) for the gift of βUCA authentic standard.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Lan or Wei Jia.

Ethics declarations

This work did not involve any human participants and/or animals.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Su, M., Xie, G. et al. Factors affecting separation and detection of bile acids by liquid chromatography coupled with mass spectrometry in negative mode. Anal Bioanal Chem 409, 5533–5545 (2017). https://doi.org/10.1007/s00216-017-0489-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0489-1

Keywords

Navigation