Skip to main content
Log in

Deficits of visual motion perception and optokinetic nystagmus after posterior suprasylvian lesions in the ferret (Mustela putorius furo)

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We recently described an area in the ferret posterior suprasylvian (PSS) cortex characterized by a high proportion of direction selective neurons. To answer the question whether area PSS subserves functions similar to cat posteromediolateral suprasylvian area (PMLS) and monkey medial temporal area (MT) we investigated the contribution of area PSS to visual motion perception and optokinetic nystagmus. Ferrets were tested on global motion detection before and after bilateral lesions involving area PSS and control lesions of other extrastriate visual areas. Following PSS lesions motion coherence thresholds were significantly increased both in pigmented and albino ferrets, whereas control lesions sparing PSS did not affect visual motion perception. Optokinetic nystagmus was strongly reduced to absent after PSS lesions. These results indicate that area PSS is crucial for global motion processing in the ferret and in that sense may be functionally equivalent to PMLS in the cat and area MT in the monkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abadi RV, Pascal E (1994) Periodic alternating nystagmus in humans with albinism. Invest Ophthalmol Vis Sci 35:4080–4086

    PubMed  CAS  Google Scholar 

  • Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51:16–31

    PubMed  CAS  Google Scholar 

  • Baker GE, Thompson ID, Krug K, Smythe D, Tolhurst DJ (1998) Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret. Eur J Neurosci 10:2657–2668

    Article  PubMed  CAS  Google Scholar 

  • Beardsley SA, Vaina LM (2006) Global motion mechanisms compensate local motion deficits in a patient with a bilateral occipital lobe lesion. Exp Brain Res 173:724–732

    Article  PubMed  Google Scholar 

  • Berson DM, Graybiel AM (1980) Some cortical and subcortical fiber projections to the accessory optic nuclei in the cat. Neuroscience 5:2203–2217

    Article  PubMed  CAS  Google Scholar 

  • Blanke O, Landis T, Mermoud C, Spinelli L, Safran AB (2003) Direction-selective motion blindness after unilateral posterior brain damage. Eur J Neurosci 18:709–722

    Article  PubMed  Google Scholar 

  • Brosseau-Lachaine O, Faubert J, Casanova C (2001) Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. Cereb Cortex 11:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Cantone G, Xiao J, Levitt JB (2006) Retinotopic organization of ferret suprasylvian cortex. Vis Neurosci 23:61–77

    Article  PubMed  Google Scholar 

  • Collewijn H, Winterson BJ, Dubois MF (1978) Optokinetic eye movements in albino rabbits: inversion in anterior visual field. Science 199:1351–1353

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, Apkarian P, Spekreijse H (1985) The oculomotor behaviour of human albinos. Brain 108:1–18

    Article  PubMed  Google Scholar 

  • Demer JL, Zee DS (1984) Vestibulo-ocular and optokinetic deficits in albinos with congenital nystagmus. Invest Ophthalmol Vis Sci 25:739–745

    PubMed  CAS  Google Scholar 

  • Distler C, Mustari M, Hoffmann K-P (2002) Cortical projections to the nucleus of the optic tract and dorsal terminal nucleus and to the dorsolateral pontine nucleus in macaques: a dual retrograde tracing study. J Comp Neurol 444:144–158

    Article  PubMed  Google Scholar 

  • Distler C, Korbmacher H, Hoffmann K-P (2006) Neuronal connections of motion sensitive area PSS of the ferret (Mustela putorius furo). FENS Forum Abstracts 3:A216.4

    Google Scholar 

  • Duersteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965

    Google Scholar 

  • Fox JG (1998) Biology and diseases of the ferret. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    PubMed  CAS  Google Scholar 

  • Guo K, Benson PJ, Blakemore C (1998) Residual motion discrimination using colour information without primary visual cortex. Neuroreport 9:2103–2107

    Article  PubMed  CAS  Google Scholar 

  • Hahnenberger RW (1977) Differences in optokinetic nystagmus between albino and wildtype rabbits. Exp Eye Res 25:9–17

    Article  PubMed  CAS  Google Scholar 

  • Hein A, Courjon JH, Flandrin JM, Arzi M (1990) Optokinetic nystagmus in the ferret: including selected comparisons with the cat. Exp Brain Res 79:623–632

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Merker BH (1983) Technical modifications of Gallyas’ silver stain for myelin. J Neurosci Methods 8:95–97

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K-P, Garipis N, Distler C (2004) Optokinetic deficits in albino ferrets (Mustela putorius furo): a behavioural and electrophysiological study. J Neurosci 24:4061–4069

    Article  PubMed  CAS  Google Scholar 

  • Hupfeld D, Distler C, Hoffmann K-P (2006) Motion perception deficits in albino ferrets (Mustela putorius furo). Vision Res 46:2941–2948. doi 10.1016/j.visres.2006.02.020

    Article  PubMed  CAS  Google Scholar 

  • Huxlin KR, Pasternak T (2004) Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. Cereb Cortex 14:81–90

    Article  PubMed  Google Scholar 

  • Innocenti GM, Manger PR, Masiello I, Colin I, Tettoni L (2002) Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). Cereb Cortex 12:411–422

    Article  PubMed  Google Scholar 

  • Jeffery G (1997) The albino retina: an abnormality that provides insight into normal retinal development. Trends Neurosci 20:165–169

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Sprague JM, Niimi K (1974) Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol 158:339–362

    Article  PubMed  CAS  Google Scholar 

  • Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol 60:580–603

    PubMed  CAS  Google Scholar 

  • Lagae L, Raiguel S, Orban GA (1993) Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol 69:19–39

    PubMed  CAS  Google Scholar 

  • Lauwers K, Saunders R, Vogels R, Vandenbussche E, Orban GA (2000) Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion areas. J Comp Neurol 420:539–557

    Article  PubMed  CAS  Google Scholar 

  • Li B, Li BW, Chen Y, Wang LH, Diao YC (2000) Response properties of PMLS and PLLS neurons to simulated optic flow patterns. Eur J Neurosci 12:1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Lomber SG, Cornwell P, Sun JS, MacNeil MA, Payne BR (1994) Reversible inactivation of visual processing operations in middle suprasylvian cortex of the behaving cat. Proc Natl Acad Sci USA 91:2999–3003

    Article  PubMed  CAS  Google Scholar 

  • Lynch JC, McLaren JW (1983) Optokinetic nystagmus deficits following parieto-occipital cortex lesions in monkeys. Exp Brain Res 49:125–130

    Article  PubMed  CAS  Google Scholar 

  • Manger PR, Kiper D, Masiello I, Murillo L, Tettoni L, Hunyadi Z, Innocenti GM (2002) The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. Cereb Cortex 12:423–437

    Article  PubMed  Google Scholar 

  • Manger PR, Masiello I, Innocenti GM (2002) Areal organization of the posterior parietal cortex of the ferret (Mustela putorius). Cereb Cortex 12:1280–1297

    Article  PubMed  Google Scholar 

  • Manger PR, Nakamura1 H, Valentiniene S, Innocenti GM (2004) Visual areas in the lateral temporal cortex of the ferret (Mustela putorius). Cereb Cortex 14:676–689

    Article  PubMed  Google Scholar 

  • Marcotte RR, Updyke BV (1982) Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system. Brain Res 242:205–217

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    PubMed  CAS  Google Scholar 

  • Moore BD, Alitto HJ, Usrey WM (2005) Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex. J Neurophysiol 94:1336–1345

    Article  PubMed  Google Scholar 

  • Nakamura H, Kashii S, Nagamine T, Matsui Y, Hashimoto T, Honda Y, Shibasaki H (2003) Human V5 demonstrated by magnetoencephalography using random dot kinematograms of different coherence levels. Neurosci Res 46:423–433

    Article  PubMed  Google Scholar 

  • Newsome WT, Paré EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201–2211

    PubMed  CAS  Google Scholar 

  • Newsome WT, Wurtz RH, Duersteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840

    PubMed  CAS  Google Scholar 

  • Nguyen AP, Spetch ML, Crowder NA, Winship IR, Hurd PL, Jantzie LL, Wylie DR (2004) A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of “visual streams”. J Neurosci 24:4962–4970

    Article  PubMed  CAS  Google Scholar 

  • Palmer SM, Rosa MGP (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24:2389–2405

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Merigan WH (1994) Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 4:247–259

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Tompkins J, Olson CR (1995) The role of striate cortex in visual function of the cat. J Neurosci 15:1940–1950

    PubMed  CAS  Google Scholar 

  • Payne BR (1993) Evidence for visual cortical area homologs in cat and macaque monkey. Cereb Cortex 3:1–25

    Article  PubMed  CAS  Google Scholar 

  • Philipp R, Distler C, Hoffmann K-P (2006) A motion-sensitive area in ferret extrastriate visual cortex: an analysis in wildtype and albino animals. Cereb Cortex 16:779–790

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP, von Grunau MW, Poulin C (1987) Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation to flow field processing. J Neurosci 7:943–958

    PubMed  CAS  Google Scholar 

  • Rudolph KK, Pasternak T (1996) Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb Cortex 6:814–822

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KK, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90–100

    Article  PubMed  CAS  Google Scholar 

  • Schenk T, Zihl J (1997) Visual motion perception after brain damage: I. Deficits in global motion perception. Neuropsychologia 35:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KE, Castelo-Branco M, Goebel R, Payne BR, Lomber SG, Galuske RAW (2006) Pattern motion selectivity in population responses of area 18. Eur J Neurosci 24:2363–2374

    Article  PubMed  Google Scholar 

  • Sherk H (1988) Retinotopic order and functional organization in a region of suprasylvian visual cortex, the Clare-Bishop area. In: Hicks TP, Benedek G (eds) Progress in brain research, vol. 75: vision within extrageniculostriate systems, Elsevier, Amsterdam, pp 237–244

  • Sherk H, Fowler GA (2002) Lesions of extrastriate cortex and consequences for visual guidance during locomotion. Exp Brain Res 144:159–171

    Article  PubMed  Google Scholar 

  • Spear PD, Baumann TP (1975) Receptive field characteristics of single neurons in lateral suprasylvian visual area of the cat. J Neurophysiol 38:1403–1420

    PubMed  CAS  Google Scholar 

  • Spear PD, Miller S, Ohman L (1983) Effects of lateral suprasylvian visual cortex lesions on visual localization, discrimination, and attention in cats. Behav Brain Res 10:339–359

    Article  PubMed  CAS  Google Scholar 

  • Standage GP, Benevento LA (1983) The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res 262:288–294

    Article  PubMed  CAS  Google Scholar 

  • St John RS, Fisk JD, Timney B, Goodale MA (1984) Eye movements of human albinos. Am J Optom Physiol Opt 61:377–385

    PubMed  CAS  Google Scholar 

  • Strong NP, Malach R, Lee P, Van Sluyters RC (1984) Horizontal optokinetic nystagmus in the cat: recovery from cortical lesions. Brain Res 315:179–92

    PubMed  CAS  Google Scholar 

  • Toyama K, Mizobe K, Akase E, Kaihara T (1994) Neuronal responsiveness in areas 19 and 21a, and the posteromedial lateral suprasylvian cortex of the cat. Exp Brain Res 99:289–301

    Article  PubMed  CAS  Google Scholar 

  • Tusa RJ, Demer JL, Herdman SJ (1989) Cortical areas involved in OKN and VOR in cats: cortical lesions. J Neurosci 9:1163–1178

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Desimone R, Galkin TW, Mishkin M (1984) Subcortical projections of area MT in macaques. J Comp Neurol 223:368–386

    Article  PubMed  CAS  Google Scholar 

  • Vaina LM, Soloviev S, Bienfang DC, Cowey A (2000) A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion. Neuroreport 11:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Vaina LM, Cowey A, Jakab M, Kikinis R (2005) Deficits of motion integration and segregation in patients with unilateral extrastriate lesions. Brain 128:2134–2145

    Article  PubMed  Google Scholar 

  • Ventre J (1985) Cortical control of oculomotor functions. I. Optokinetic nystagmus. Behav Brain Res 15:211–226

    Article  PubMed  CAS  Google Scholar 

  • von Bonin G, Bailey P (1947) The neocortex of macaca mulatta. University of Illinois Press, Urbana

    Google Scholar 

  • Zeki S (1991) Cerebral akinetopsia (visual motion blindness). A review. Brain 114:811–824

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Krekelberg for creating the stimulus software “randomdots” and S. Krämer, H. Korbmacher, and S. Dobers for expert technical assistance. We are also grateful for the constructive comments of the anonymous reviewers which helped to improve earlier versions of the manuscript. This study was supported by DFG grant Sonderforschungsbereich 509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-P. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupfeld, D., Distler, C. & Hoffmann, KP. Deficits of visual motion perception and optokinetic nystagmus after posterior suprasylvian lesions in the ferret (Mustela putorius furo). Exp Brain Res 182, 509–523 (2007). https://doi.org/10.1007/s00221-007-1009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1009-x

Keywords

Navigation